USER’S
MANUAL

ARACHNE

2016

ARACHNE: A neural-neuroglial network builder with remotely controlled parallel
computing.

ARACHNE is a newlv desioned simulation environment in which neural network orosanization
ontimization and execution take advantaose of the nre-set. ontimized narallel aloorithms for remote
comnputations and friendlv user interface located on a local combputer. With this strateov. even
amatenr is able to intesrate the representative varietv of bionhvsical mechanisms pertinent to nerve
cells. within a sinole model in which the network complexityv is limited onlv bv the availabilitv of

remote combnutine resonrces. and not bv the modelline kernel or its interface

This manual describes how to set up and run MPI+OMP version of tool ARACHNE. The general scenario of
the simulation is as follows. A user works on a host computer using MATLAB installed under Windows/Android.
MATLAB program generates input MAT-file and uploads it to remote HPC cluster operated under Linux/Windows.
Then the cluster part starts a simulation without the communications with the host computer. The user’s computer
connects to the remote process from time to time to a) know time of computation is and b) download intermediate
results of the simulation (the results are shown in MATLAB Plots and save to the output file). When simulation
completes, MATLAB host computer downloads the output MAT-file and visualises the final results.

Contents

ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing.ccccceeeeciieieecireennnee. 2
GETTING STARTED. ...ttt ettt ettt e e e e e e s sttt e e ee e s e sas s bt eeeeeeeseaasae et e ee e e e s aab e e et eeeeeeannnseaeeaeeeeenannnsnnaaeeeeaanannss 5
Preparing ARACHNE fOr the firSt JaUNCR ...ccoo et e e e e e e e et a e e e e e e e s e abreaaeaaaeas 5
Preparing HPC (OS Linux) cluster for running of ARACHNEc.oviiiiiiiee ettt et e e e e e eanaa s 5

Test ARACHNE uSiNg Preinstalled ClUSTEI........uii e et e e e e tta e e e e re e e s e arae e e ebeeeeeeanes 5
How to run the simulation on your local computer without remote cluSter.ccveivccieii i 8

RUNNING the STMUIATION ...evviriiiiiiesieeseesiese ettt se st sttt e e te e ste e st e s aee s s eesbe e eeeesse e beesseesssassseesesseenssenssenseeesseenseenseensenns 8
N 11T (S q 1S 011013 1| AT ST P PRSP 8
SCALADIIIEY TEST...uvtueeurerieeestirr ettt ettt sttt sttt et b et et e s b s st e s e e she e st e s bt s et ea s e s at e s e s e et e b e e bt e e e e b e s ae e se e emeeanenr e e r e reene e neane 9

NON-TeMOLE STMUIALION MOMESveivieiuieiie ettt ettt ettt e sttt s bt e bt e sb e e st e s be s bt e beenbeesaeesatesabesabeanbeesbeesaeesatas 9

ARACHNE Parameters AeSCIIPLION ...eevuvueirveeriteeirteerrieeesteesiteeesieeestteeeteeessseessseessaseesaseessssessssesssssessssesssssessssassseessssessns 11
The GUI MOAE] PATAIMELETSecueeueeiteeieieeteeiesie ettt sttt sttt sttt sh e e te bt sbeesbesbeebtesbesheeaeesaeeabenbe et enbesbeenbenbeeneenbenne 11
PANCL: CUSTOMN ...ttt ettt ettt b e eb e e b e eb e e be s bt ea b e s bt sa e eab e eh e ea b e shesaten bt ebeeabe bt ebeebesbeebeesbesheeneesaenaee 11
PANEL: IMOMEL ...ttt ettt et b e bt e bt e st e e bt e bt e bt e be e b e e st e sabe s be e be e beeshee st e sats 11
Synaptic connections 1l0calization MOEIScceririiiiiieseeeeee e e 13
o3 1<] Y (T (< W N 3 (o) DO U U SU TP UPUPOPP 15

o[V T dTo oI foT g K 1 o TV u =l g Y=l 1Y.Y /o o QSRR 15

Parameter of GUI fOr astroCyte NETWOIKS.uiii it et ae e e et e e e e s abe e e e sasaaaesenaeeeas 15
o3 1<) Y (T (<] W (o) L) T TP U PSPPSR 16
Panel: MOAEL (STDP).....coiuirieiiiieieieeee ettt st sttt e r st e bt b e ne e sm e s e seesmeeresseemr e re e e ennenne 18

Adopted mechanisms 0f SYNAPLIC PlaStICILY ...eveevirireirrieeerriree ettt e eesr e e see e ssee e 18

Equation for the spike-time dependent plastiCity (STDP) ..ccvecvveeiieiiiriiiciieseeseese e sre e ere s sre e e 18

Equations for frequency-dependent PlastiCIty......ccueceeeverrerriersieereereeseesiesressreesreesreeseesssessseessesssesssesssessssesssesnns 18
o TS LY (o (<] 1 G 1) TSRS 19
Panel: MOdel (IMOD-CUL)coiiiirieriieieie ettt ettt sttt s r et s s bt e resh e s e s resheese s satsaneseesmsereer e e renreereenrenne 20
PAnEL: HPC ...ttt et ettt h ettt e ae e e be e bt e bt e bt e ehe e et e s bt e b e e bt e b e e ehe e et e e be e be e beeeheesateeatas 21
Panel: RNG (Random NUMDEr GENETALOT)cccvevuerririerierieeriesesieete sttt see e ereesresseeneesresmeennesreemseresseenseane 25
Panel: Kinetic (Kinetic 0f the DASIC CUITENLS) ...vvviiriiiieirieieeieeesieeseesteesteesteesreseseessteesreesseesseesressssesssesssesssesssessseesnnes 25
Panel: INTHAl CONAIIONS.cc.uiierieieiteetieie ettt ettt eb et bt eat e s besaeeab e s bt eatesbeeate bt sbe e besbeebeenbesbeentesbesaneneeene 27
o 0T B N A 1) T T (N1 5 ¢ o) S 27
Panel: Init. Comnd. (X-CUT)...cueiiiieieriiieie ettt sttt sttt st e r s et e b e ebeenbesbeeseesbesmeennesreemrearesneenneane 27
PanEl: IMEASUTEA......cotieeieitii ettt e h ettt b e bt e bt e st e e be et e e bt e abe e she e saeesabe st e eabeebeeshee st e sabeeabeents 27
Panel: MEasured (ASIIO)ceeerrirriereriirieesie sttt sttt sttt ettt st e s e e st eas e s bt e st e r e et e b e bt e e e s bt nneeseesreeneenresmnenneens 28

Panel: Measured (X/MOD-=CUT).......cotiuiriireetineese st sressee sttt sre et sre s s e e e e s s e s bt ese s smesaseseesmeeresreenrenreereensenne 28

PANCL: PLO ...ttt ettt ettt e h e e b bt eht e b s h e ea b e bt ea b bt ea e et e ehe e be bt eb e e nbesbeentenbesatenteeae 28

o 0T I o 01 (72N 7) USSP 29
Panel: Plot (X/IMOD=CUL)coiutririeitieieieeieeesie et esie st eetesresseesre st sresee bt er e e resheebeesbesheese e satsaneseesmsenreereenrenreeneensenne 29
How to change parameters on the remMote CIUSLEr. ... e e e e e e an s 29
(Example) How to changing deterministic external drives to E- and I-Cellscccceniniinininiinincinceceee, 29
(Example) Changing SySteIm Of €QUALIONS......ccueeiiiiirieerrieeesieeriee ettt et e steeesireesbeeesabeesbeessstesssbeessssesssessnsesssssnesnsees 30
(Example) Choosing and initialization of random NUMDET ZENETALOTSc.eevveereerreerrieerierrreeseeseesseessesresseeseeseess 30
Model restrictions, memory requirements and PEIrfOIMANCEcccvverreerierieeriieriirreereereeseeseesreseeeseeesreesseessaesseesneas 31
Bit synaptic CONAUCLANCE MAITICES ...e.veeveererieeieerieiitete sttt ettt et ese e s sseear e s bt et er e st e e e sre e resbeeneesresreeneesresmneneens 31
Memory allocated 0n @ CIUSLET TIOAEveuveiieeieiece ettt er e e reene e ne e 32
Limitations of the number of neurons caused by MEMOTY TEQUITEIMENLScceevrerreeierireeeine e e 33
Performance of ARACHNE ..ottt sttt et st s te st e e b e bt e sre e st e sabesmneennes 33
Scalability curves for different types 0f MAIICES ...ccvevviriiriiieiieiieriire et e e e ste e s e e sra e aesreeeseeesseesaeens 35
Structure Of MATLAB NOSt PrOZIAIM.....ccccuiitirteirieeieeieeeieeiteesreesieesteessessseeseeseesseessessssesssesssesssesssessseesssessseessesssessness 35
Structure OF HPC KEIMIEL.....c.eiiiieeie ettt et ettt b e e eb e e st e s be s be e bt ebee st e e besbeebeenbeens 36
SOUTCE COMR ..ttt ettt ettt ettt ettt e e s bt e s bt e sh e e ehe e eate e te e be e bt e bt e bt e et e e abeeabe e beenbeesbeesatesabesasesabeanbeesbeanas 36
/00 QITECTOTIES +uvveeeeeieeeite ettt ettt ettt e b e bt e bt ehe e e te e be e bt e bt eab e e ehe e et e eabe e beenbeesbeesatesabesabeebeebeesbeesaeesatas 38
Passing new parameters from host (MATLAB) t0 WOTKErS (CH).cuiiiieiiiiirireeeieeseesieisieeseesessstessieesveessessressseesssesses 39
Passing a New SCalar 10 AN EQUALIONcc.veeiriiiriie et ereeerte ettt ettt e st e et e e e be e e bbeesabeesbeeesabaessbeesateesaseessnseesnsesenses 39
Passing a new vector to an element-WiSE OPETALIONciueirerrreeerreerreerrersteesreeesteeteessessseessesssessseesssesssesssesssesseesssesnnes 39
The case of SCAtEriNG OF the VECTOT......c.eiiiriieieiceeere et s st ae e e nenre e 39

The case of broadcasting 0f the VECIOT.......ciiiieciiieiei ettt 40

L2 10]] 0§23 Lot TR 10 To T (<) U SP 40
Model equations for membrane potential AYNAMICScccvevevierierieeiieriiee e eeeseesee e see e sbeesreeseesreesseessseessesnns 40
Model equations fOr SYNAPLIC CUITEILS ...ecuvevrieereerierrirteeieeseeseesseesseessseesessseessessssesssessseessessesssessssesssesssesssesssesses 40
Network organization: TOPOLOZYceveiirieriiieie sttt sttt et r b e se e resee e e s saeenenres 40
Network organization: Synaptic strengths and their diStribUtions.ccccevereeriiincenire e 41
Release probability diStTIDULIONeeeererreeseeriinieeriesiert sttt ettt sr e st n et eresreeeenreas 41
Setting the EXIEINAL INPULccviviieieeieereereesieeteese et e st e seesttesteer et esteesseesseesssesssesssesssessseesseessesssesenseesseensenssesssnnas 41

THE NEEWOIK FECAII ...ttt sttt e bt e s bt e s s e s m bt ea et e st e e st e e sbeeseeesaneenneesreesneenns 42

2 Yol = o} il T | =10 d T=L o <1 SRS 42
Equations for extracellular @leCtric fIEldo e e e e e e e r e e e e e e e 43

GETTING STARTED

Preparing ARACHNE for the first launch

The newest installation version currently available can be downloaded from
https://github.com/LeonidSavtchenko/Arachne, which should be installed on the host and clusters computers.

Download two directories host and worker from GITHUB repository, catalogue/Full-version, which contains
files for installation ARACHNE for any cluster operating under Linux/Windows and any host computer operating
under Windows and with preinstalled MatLab.

The address of the catalog: https://github.com/LeonidSavtchenko/Arachne <Full-version>

1. Copy the directory “<root>/host”’ at any place of your local computer with Windows
operating system and preinstalled MATLAB.
2. Copy the “directory/worker” on your cluster. (See details “How to run a simulation on

a remote cluster”).

Preparing HPC (OS Linux) cluster for running of ARACHNE

1. The cluster is prepared only once. Thereafter, only the host computer will be used. However, if the cluster will
require substantial modification, the change in the cluster C++ code will be modified according the similar
scenario.

2. Before installation the kernel of ARACHNE on the cluster, one need to be sure that “mpict++” (Message
Passing Interface) compiler is present in the system path. The free version of mpic++ is here
https://www.open-mpi.org/software/ompi/v2.0/. Almost all modern clusters operating under Linux have this

compiler in the system.
3. Download the folder “worker” with all its content from https://github.com/LeonidSavtchenko/Arachne/<Full-
version> repository. This folder must be saved to the place shared between cluster nodes. For example, it can

be saved in the directory “/home/<username>". To share files between a host computer and a remote cluster
user can use free software “WinSCP” https://winscp.net/eng/download.php.

4. To compile the application, the following running script “<root>/worker/build/lin_release.sh.” must be
activated typing in a command line sh. /lin_release.sh. If the compilation is successful, the file “gs.exe” will
appear in the parental directory.

5. The cluster is ready for the computation.

Test ARACHNE using preinstalled cluster

If you want to test ARACHNE before an installation to your own computers
cluster, please use the preinstalled cluster located at 144.82.46.83. The following
directory contains preinstalled software:
/home/reviewer/worker
Login: reviewer
Password: reviewerl
To start a simulation with the cluster preinstalled configuration:
1. Go to the directory ...<root>/host at your local computer
2. Launch the following Matlab script:

“...<root>/host/START Arachne.m”. Make sure that Matlab is installed on the
local computer.

Preparing “host” local computers (operating under Windows)

1. System Requirements. ARACHNE supports MATLAB 7 and higher. The MATLAB code automatically
adapts itself to the operating system on which it runs, eliminating the need for manual settings.

2. Download the folder “host” with its contents from https:/github.com/LeonidSavtchenko/Arachne/<Full-
version> repository to the local machine operating under Windows.

3. Open file on your host computer “<root>\host\Code\scripts\win-lin\params.bat’ and adjust the following 4
variables: : “HEADNODEIP” — IP address of the cluster, “LOGIN” — Login name of your account of the
cluster, “PASSWORD” — password of your account, “HEADNODEWORKERDIR” — the address of the
location of “gs.exe” file on the cluster, to be consistent with your cluster.

4. ARACHNE host files are ready for preinstalled cluster.

Launch the following Matlab script: “<root>\host\START Arachne.m’.

6. Choose between 3 different options: the option, 1, is for analysing of previous results, the option, 2,
is for starting a new computation and the option, 3, is for continuing of previous computations (See

e

the next Fig).
Please specify what to do:
1. Download "ot ut.mat” and analyse results.
2. Start simulation from scratch (current files "output.mat”™ and "intermediate.mat"™ will be lost).
3. Continue simulation from the same point.

[1, 2 or 3]:

Parameters

& cates T [7. Launching the option 2 generates the following
*) Model scalTest: [Wlndow Of GUI
) lodel (hstr) . : 8. Very important. Uncheck box fakeMPI, Uncheck
 Hodel Tonic) . p box scalTest, Check box “remoteHPC” -- checked, edit
) Hodel (STOP) remoteheC: (7] box “nt” and”’np” = the number of processor cores per one
“) Model (X-Cur) Inadediodes; {tuxmaster, tuxm?’, tuxm2’, tuxm3’, tux Cluster]’]Ode, Check b()X “backg]‘ou]’]dMOde”,
@ HPC zipMatFiles: [U]
71 RNG scmlype_ee: KrnDense 5o
1 Kinetic scmType_ei. KmDense X
_) Initial Conditions scmType_ie: KrnDense T
_) nit. Cond. (Astro) semType i KmDense i 1 1 1
3. Using this GUI window user can
() Init. Cond. {X-Cur) useSPA: [V] . .
a. check/modify the parameters of the “basic”

") Measured reportPeriodtter: 100 it} e 99

= networks model. See “ARACHNE parameters”.
_) Measured (Astro) savelntermilat: V] . .

- b. upload the file with another input
) Measured (X-Cur) saveBackuphtats: ||
©) Plot cAsPerindSec: 5 s} p arameters. .
- oot as D - " c. save the new set of input parameters.
_) Plot (X-Cur} cdePeriodSec: 5 Is]

outFileName: ‘output’ [.maf]

savelnput2Output: [V]
Tax_num_spikes_e_factor: 0.02

max_num_spikes_{ factor: 0.02

4. After modifying the parameters (if needed), then click OK, and the GUI generates the next window
(External drivers for e-cells), in case, if Model(STDP)->EnableSTDP box checked. At this point,
the user may specify the input image (the spatial patter of activation of e-cells) for the network
storing. To do so, user has three options (see picture):

=

% Do you want to draw a new image with Matlab, draw a new image with MS
Cé}hﬁ Paint or load an existent image fila?

Draw with Matlab Draw with MS Paint Load

1) using a matrix generated by MATLAB (see the picture), where the number of element
corresponds to the number of e-cell. Using a mouse one can click on any e-cell (technically it
means that user add the depolarization current to the e-cell). This method of the external pattern
generation is convenient for small networks

Ll 32 3 24 35 36 7 38 39 40 41 42 43 L 45

48 47 48 43 50 51 52 53 55 56 57 58 59 80

&1 62 | 63 84 | 65 | 88 | 67 82 | 69 | 70 il 72 73| T4 75

76 77 78 79 E & a2 83 | 84 85 86 a7 88 89 20

el 92 3 84 95 96 a7 88 g8 | 100 102 | 103 | 104 | 105

106 | 107 [108 | 109 | 110 | 111 | M2 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120

121 | 122 (123 | 124 | 125 | 126 128 | 129 | 130 | 131 | 132 133 135

136 | 137 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150

166 | 167 | 168 | 189 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180

181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195

196 | 197 | 198 | 199 | 200 | 2 202 || 203 204 205 | 206 | 20 208 208 | 21

Click all I oK ‘ Cancel |

2) drawing a black and white image with any graphic editor. It was designed for large networks.
(See the example picture).

3) The a black and white image can be downloaded.

Black pixel in all cases indicates the depolarizing e-cell by 1 mV. The value of depolarization can be
changed via the GUI (Model(STDP)->BlackValue).

5. After clicking OK the host send the file to the remote cluster located at 144.82.46.83
to start simulations.

6. When the simulation is completed, the cluster will generate results send the results
back to the host and MATLAB will plot the results.

How to run the simulation on your local computer without remote cluster.
The host and remote parts are installed on the same computer.

This option is an important when you need to start simulation with the host and remote parts are located on the
same computer.

1. Make sure that you have Matlab installed on the local computer.

2. Make sure that Visual Studio Community installed on the local computer. This free IDE can be
downloaded here:

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

Important. The “Visual C++’ option must be checked during installation.

3. Download the folders “host” and “worker” keeping the structure and all of its content from GitHub
repository to your local machine.
4, Open file “<root>\worker\build\vars.bat’ in any text editor and adjust the following three paths to be

consistent with your machine: “VSDIR”, “MLDIR”, “GSDIR”. VSDIR is a director with Visual Studio, MLDIR is a
director with Matlab, GSDIR is a directory with gs.exe

5. Run script “win_fakeMPI release.bat” located in this directory. The file “gs fakeMPl.exe” should
appear in the parental directory after that.
6. Open file “<root>\host\Code\scripts\win-win\params.bat” and adjust the following 2 paths:
“MATLABHOSTDIR”, “WORKERDIR”.
7. Open file “<root>\host\Code\BasicParams\BasicParams.m” and set remoteHPC = false.
8. Launch the following Matlab script: “<root>\host\START Arachne.m”.
When GUI appears, go to “HPC” Panel and adjust the following three elements:
. editbox “nt” = the number of cores in your processor,
o checkbox “backgroundMode” -- unchecked.
9. After that you can click “OK” -- the simulation will be conducted on your local machine instead of the

cluster.
Running the simulation

Single experiment

1. Wake up all nodes of the cluster. (Alternatively, you can run simulation on the master node only.)

2. Open file “host\START Arachne.m” in MATLAB and press F5.

3. Open Panel Hpc specity remote HPC = true.

Specify number of processes “np” you are going to run on the cluster. (The number should not exceed the total
number of processors on available cluster nodes.) Specify number of threads per process “nt”. (The number should not
exceed the number of cores of a processor.)

If everything is OK, you will see messages in MATLAB console reporting about:

e Uploading of input MAT-file to the head node of the cluster.

e Progress of simulation.

e Downloading of output MAT-file from the head node.

Then windows with graphical representation of the results must appear.

8

If you need to stop the simulation, click on Command Window in MATLAB and press Ctrl + Break. This stops the
client (local computer) part of simulation, but not the server performance. In order to stop server operations, one needs
to run the first or the second script from the following:

1. “SCRIPT TerminateBackgroundProcess.m”.

2. “SCRIPT KillBackgroundProcess.m”.

Scalability test

1. In GUI HPC specify scalTest = true.
oo 1 Specify maximum number of processes “np” and maximum number of threads
O o sy : per process “nt” you are going to use in the test.
gfm: ’ 2. Specify the minimum number of processes “minNP” taking into
i e e account that a very large number of neurons and too small number of processes
O Ko = may cause memory deficit (see the paragraph below). On the other hand, make
e B —— sure that the number of neurons is large enough to show the real scalability.
s e 7 Here are some examples:
8[WA a) minNP=1; np=9; nt=4; num e=200; num i=100;
L e t_final = 500; radius e = 250; radius_i=200; v=0.1;
S scmType XY = KmnDense; distMatPVH = false;
p— : . BAB — not enough neurons to show real scalability;
b) minNP=1; np=9; nt=4; num e=8600; num i=4300;
o | t final =0.2; radius_e = 250; radius_i = 200; v=0.1;

scmType XY = KmDense; distMatPVH = false;

- — memory deficit happens for number of processes less than 5 (the amount of required physical
memory per cluster node exceeds 1700 MB);

c) minNP=8;, np=9; nt=4; num e=8600; num i=4300; t final=0.2; radius e=250;
radius_i=200; v=0.1; scmType XY = KrnDense; distMatPVH = false;

GOOD.

If everything is OK, you will see messages in MATLAB console reporting that simulation is run for number of
processes equal minNP, minNP + 1, ..., np and number of threads per process equal /, 2, ..., nt in sequence.

At the end the window must appear showing set of scalability curves. Each curve y(x) corresponds to specific
number of threads and is defined by “x” being number of processes and “y” being inverse time of execution.

Non-remote simulation modes

Besides the remote simulation mode described above, the simulator can be run in the following two modes:

1. Running from MATLAB on local machine under Windows on the same machine.
2. Running from MATLAB on head node of Linux cluster on the same cluster.

These two modes were developed mostly for debugging and testing purposes. In order to use the first mode,
you need to adjust variables defined in the script “host\scripts\win-win\params.bat.” Usage of the second mode
requires adjustment of variables defined in “host\scripts\lin-lin\params.sh.” The parameter “remoteHPC” defined in
GUI HPC panel should be specified as “false” in both cases.

The first mode needs compilation of HPC kernel under Windows. The compilation requires the following
software installed:

1. Microsoft MPI available for free by the following reference:
https://www.microsoft.com/en-us/download/details.aspx?id=52981
2. Microsoft Visual Studio Community 2015 or other C++ compiler. Notice that compilation

with other C++ compiler may require changes in the code of HPC kernel because each compiler has its own
specific requirements to the code.
3. MATLAB R2013a. Usage of some other version may require changes in code of HPC kernel.
MATLAB is necessary because it provides compile-time libraries and run-time libraries used for MAT-file
read/write staff. The directory with MATLAB libraries must be added to the system path variable. You can access the
variable as following:

1. Go to Windows Explorer -> My Computer -> Properties -> Advanced -> Environment
Variables.
2. Select the variable with name “Path” and click “Edit” button.
3. Add “C:\Program Files\MATLAB\R2013a\bin\win64” to the end of the string. (Your addition
to the string will be other if you installed MATLAB to some non-default location.)
Alternatively, you can copy stuff of the directory “C:\Program Files\MATLAB\R2013a\bin\win64” to the
directory containing ARACHNE executable “gs.exe.”
Compilation of HPC kernel under Windows is performed with one of the following scripts located in the
directory “worker”:
1. build Windows DEBUG.bat.
2. build Windows RELEASE.bat.

10

ARACHNE parameters description

The GUI Model Parameters
ARACHNE generates the table of parameters

© o s
s s

© o e T)

© ot « .

© v e -

© woascxm e -

o mods -

ome s -

© e mas -

© vt T R

S e —
T e a—

© s et

O et | s

© Measured (X-Cur) w_ie_max_bsd: | mm densities of synaptic connections.

© Pot a_hatie: |1) the value > 1 gives saturation and corresponds to value = 1;

the strengths of the connections are given by g_hat_ee, g_hat i g_hat_ei and g_hat_ie.

Panel: Custom
Parameter: customCode Description: Text areas for custom m-code where user can define any additional variables
accessible from the expressions in edit boxes.

The basic model includes three networks. First network is a network of E-cells (excitatory networks),
the second network is network of I-cells (Inhibitory cells) and a-cell (astrocyte networks)

Panel: Model

Parameter: num_e Description: Number of E-cells

Parameter: num_i Description: Number of I-cells

Parameter: ¢_final Description: Time of simulations

Parameter: dt Description: Time step used in the midpoint method

Parameter: freqWinWidth Description: Width of time window used for calculation of spikes frequencies in the
following two cases: 1) calculation of overall i-network frequency if dynamicGTonicGABA is checked; 2)
calculation of particular neurons frequencies if enableSTDP is checked.

Parameter: fau_r_e Description: Rise time constant of associated with E-cells synapses

Parameter: fau_d_e Description: Decay time constant associated with E-cells synapses

Parameter: fau_r_i Description: Rise time constant associated with I-cells synapses

Parameter: fau_d_i Description: Decay time constant associated with I-cells synapses

Parameter: v_rev_e Description: Synaptic reversal potential of e-cell

11

(See details in Synaptic connections localization models)
Parameter: scIModel Description: Synaptic connections localization model BSS: bell-shaped strength and uniform
density of connections BSD: uniform strength and bell-shaped density of connections

BSD BSS

Figure. Two types of synaptic distribution.

Parameter: w_ee_max_bss Description: Maximum strengths of ee-synaptic connections (the density of synaptic
connections is highest possible)

Parameter: w_ii_max_bss Description: Maximum strengths of ii-synaptic connections (the density of synaptic
connections is highest possible)

Parameter: w_ei_max_bss Description: Maximum strengths of ei-synaptic connections (the density of synaptic
connections is highest possible)

Parameter: w_ie_max_bss Description: Maximum strengths of ie-synaptic connections (the density of synaptic
connections is highest possible)

Parameter: w_ee_max_bsd Description: Maximum densities of ee-synaptic connections. Notice that: 1) the value > 1
gives saturation and corresponds to value = 1; 2) the strengths of the connections are given by g hat ee ,
g hat ii, g hat eiand g hat ic.

Parameter: w_ii_ max_bsd Description: Maximum densities of ii-synaptic connections. Notice that: 1) the value > 1
gives saturation and corresponds to value = 1; 2) the strengths of the connections are given by g hat ee ,
g hat ii, g hat eiand g hat ic.

Parameter: w_ei_max_bsd Description: Maximum densities of ei-synaptic connections. Notice that: 1) the value > 1
gives saturation and corresponds to value = 1; 2) the strengths of the connections are given by g hat ee ,
g hat ii, g hat eiand g hat ie.

Parameter: w_ie_max_bsd Description: Maximum densities of ie-synaptic connections. Notice that: 1) the value > 1
gives saturation and corresponds to value = 1; 2) the strengths of the connections are given by g hat ee ,
g hat ii, g hat eiand g hat ic.

Parameter: g_hat_ie Description: Conductance of synaptic ie-connections

Parameter: g _hat _ei Description: Conductance of ei-synaptic connections

Parameter: g_hat ii Description: Conductance of ii-synaptic connections

Parameter: g_hat_ee Description: Conductance of ee-synaptic connections

Parameter: g stoch e Description: Maximum conductance of stochastic excitatory input pulses (a synaptic noises
coming from outside these networks).

Parameter: f stoch_e Description: Frequency of Poisson excitatory signal (a synaptic noise mean frequency)

Parameter: tau_d_stoch_e Description: Decay time of single excitatory synaptic noise

Parameter: g_stoch_i Description: Maximum conductance of inhibitory input pulses (a synaptic noises coming from
outside these networks).

Parameter: f stoch_i Description: Frequency of Poisson inhibitory signal (a synaptic noise mean frequency)

Parameter: tau_d_stoch_i Description: Decay time of a single inhibitory synaptic noise

Parameter: r_e Description: Synaptic delay of e-synapses

Parameter: r_i Description: Synaptic delay of i-synapses

12

Parameter: g _e Description: Parameter connection between i1 and e. The scaling of synaptic conductance between e
and i neurons (ge* g_hat_ei). Dimensionless.

Parameter: StimInter Description: Constant depolarization of i-neurons in pA

Parameter: radius e Description: Radius of e-network

Parameter: radius i Description: Radius of i-network

These two variables specify the radii of ring networks in micrometres. Variable “radius_e” determines

radius of e-network and variable “radius_i” specifies radius of i-network. The numbering of neurons in ring
networks guarantees that the distance between the first neuron of e-network and the first neuron of i-network
is minimal (see picture 1).

250 —

200

150 -

100 -

50

50k

-100

-150

=200

-250 L

I I I I
-300 -200 -100 200 300

X, um

Picture 1.

Parameter: v Description: Rate of signal propagation between neurons. This parameter defines the delay of signal
between neurons. The parameter specifies the rate of signal propagation in micrometres per millisecond.

Parameter: releaseProb ce Description: Release probability within e-network

Parameter: releaseProb ii Description: Release probability within i-network

Parameter: releaseProb ei Description: Release probability from e-network to i-network

Parameter: releaseProb iec Description: Release probability from i-network to e-network

Parameter: sigmaDivisor_ee Description: Spatial variability of ee synapses

Parameter: sigmaDivisor_ei Description: Spatial variability of ei synapses

Parameter: sigmaDivisor_ie Description: Spatial variability of ie synapses

Parameter: sigmaDivisor_ii Description: Spatial variability of ii synapses

Synaptic connections localization models
There are two models of synaptic connections localization. In both model the normal distribution of one
synaptic connection parameter is used:

ma\x(numRows,numCols)—1)2 (j-1 i—-1)2
numcols— numRows—1

. 1
w_XY(i,j) = w_XY_max - exp [— > (Sigma XY

The first model consists in bell-shaped strength and uniform density of connections. Synaptic conductance
matrices of this model are presented at the picture 2 with following set of parameters:

num_e = 1000; num_i = 500;

w_ee max = 1.3; w_ii_max = 0.35; w_ei_max = 0.5; w_ie_max = 0.15;

sigma_ee = 100; sigma_ei = 75; sigma_ie = 75; sigma_ii = 50.

13

ee

08

06

04

02

015

01

003

200 400 600 800 1000

Picture 2

The second model consists in uniform strength and bell-shaped density of connections. If in this model the
parameter “w_ XY max” is more than unit, the density of connections between neurons becomes saturated (compare
matrices “g_ee” and “g_ie” at the picture 1). Synaptic conductance matrices of this model are presented at the picture
3 with following set of parameters:

num_e = 1000; num_i = 500;

g hat ie=1.2; g hat ei=1.0; g hat ii=1.0; g hat ee =1.0;

w_ee max =2; w_ii_ max = 0.8; w_ei max =0.9; w_ic_ max =0.3;

sigma_ee = 100; sigma_ei = 75; sigma_ie = 75; sigma_ii = 50.

g

o8

Picture 3

In this model of localization of synaptic connections the value w_XY max >= 1 gives saturated density of
connections.

In both models the elements on principal diagonals of intranetwork matrices (“g_ee” and “g ii”) are always
equal to zero to avoid influence of neuron on itself.

14

Panel: Model (Astro)

Equations for astrocyte network
In the model, the astrocytic intracellular calcium dynamic is described by the following equation (1):

dCa
dt Z_Jc_']p_']l_']syn (1)

C 2
v3—azis the flux through SERCA pumps, J, =cv,(Ca—Ca,,) is the leak from the

2

where J =
k5 +Ca

endoplasmic reticulum into the cytosol, J,, = g (Ca—Ca,)+ g ,(Ca—Ca,) is the calcium fluxes through the

gap junctions generated by the nearest left and right astrocytes, J, =Cvm.n.q’(Ca—Ca,,) is a calcium
voltage-dependent current from the intracellular store, where ¢ is the fraction of active IP3 receptors and g
is the conductance of the gap junction between astrocytes.

The parameters of the intracellular stores are defined by the following equations:

dg P Ca
—=a,(-9)-pq, m, = , n,=——
(==P P+d, Ca+d,

dt
P+d, c,—Ca
—1, =a,Ca, Ca,, ==
P+d, Py =a R ¢
Given that IP3 degrades with a time constant of 7, an equation for cytosolic IP3 is needed, specified

a,=ayd,

as

dIP, IP.-1IP,
L= b,
dt T,

where [y] is concentration of neurotransmitter release from the synapse, i3 [mM s'] is the rate of
IP3 release.

The dimension and values of parameters see in the section “Basic set of parameters”

Local concentration of neurotransmitters depends on the spike generation by nearest neurons and the
uptakes by the pump. The dynamics is described by the following equation

dly]

dt = Tspike5(t - tspike) - tp [y]

Where zspike 15 the time scale of spike, and #, is a time course of uptake.

The calcium concentration of astrocyte [Calssiro influences the release probability of a nearby
neuronal synapse according to the equation

[Ca]

p p basic + pMax ([Ca]asn‘o]

where p is a release probability of the synapse from e-neuron to the i-neurons. Astrocytes interact
through the gap junctions.
All of this parameters user can modify using the GUL

Parameter of GUI for astrocyte networks.

Parameter: enableAstro Description: Whether to enable the astrocyte network

Parameter: astroTimeScale Description: Astrocytes evolution time scale divisor. This time constant defines how often
the astrocyte network dynamics updated.

Parameter: vI Description: Parameter of astrocyte network

Parameter: v2 Description: Parameter of astrocyte network

Parameter: v3 Description: Parameter of astrocyte network

Parameter: dI Description: Parameter of astrocyte network

15

Parameter: d2 Description: Parameter of astrocyte network

enableAstro:
ssyoTimesca 1000 Parameter: d3 Description: Parameter of astrocyte network

vl 6

B

Parameter: d5 Description: Parameter of astrocyte network

Z

Parameter: c1 Description: Parameter of astrocyte network

2

Parameter: a2 Description: Parameter of astrocyte network

Parameter: k3 Description: Parameter of astrocyte network

@

Parameter: ip3star Description: IP3 basic concentration
5 — Parameter: tip3 Description: IP3 time constant

a2 02 [1/uM/s]

Parameter: rip3 Description: Parameter of astrocyte network

K3 01 uM]

ict i i Parameter: gs Description: Parameter of astrocyte network

tip3: ms] . . .
’ 4 - Parameter: tau_spike Description: Parameter of astrocyte network

rip3: 72 [1/ms]

= 1 sy Parameter: t in Description: Parameter of astrocyte network
e .) Parameter: p_basic Description: Release probability

tin 200 [m]

Parameter: CaBA Description: Resting Ca concentration

p_basic 02

catn 02 b Parameter: Ca ER Description: Ca concentration inside inside endoplasmic reticulum

Ca_ER 3 [uM]

Panel: Model (Tonic)

Equation for tonic currents

Experimental data revealed that the dynamics of the networks depend on the concentration of
extracellular neurotransmitter. The neurotransmitter activates the extrasynaptic receptors which generate the
tonic currents. To take into account this mechanism, the neurons in the model include the following non-
specific tonic current, lonic Eq.(2):

1 tonic = Gtonic (I/tom‘c _V) (2)

where Gionic 18 a tonic conductance, Vionic is a reverse potential of tonic current and /' is the membrane
potential. The non-specificity means that the user can set either excitatory or inhibitory tonic current.

Model affords two options for the tonic conductance: constant conductance and network activity
dependent conductance.

In the brain, the extracellular neurotransmitter concentration varies depending on the frequency of
synaptic release and the ion pumps activity. In turn, the extracellular modification of the neurotransmitter
concentration affects the extrasynaptic receptor activations and thus modifies neuronal excitability and thus
the frequency of synaptic release. To take into account the feedback between neurotransmitter concentration
and network activity, a new biophysical mechanism is added to the model, which relates the tonic current
conductance to the firing frequency of i-neurons.

Mathematically, the dynamics of Gunic 1s described by the following equations.

The first model

daG,, ..
#:Ni Af(fm[t_dt]—i_f;))_tp(Gmmc _Gh)’ (3)a
The critical dynamic variable of the equation is the i-neurons network firing frequency Eq.(4):
1 &
=——» AP(T,t 4
Jo= 7 2ARTD 4)

i =1
The variable, f, is the average frequency of the interneuron network calculated as a sum of all APs
generated by all i-neurons within the time frame of 7.
Other parameters are: N; is the number of neurons in the network, 4y is the change of the tonic
conductance as a single interneuron generates a single AP during time 7, #, is the rate of neurotransmitter

16

uptake, Gy is the reverse concentration of neurotransmitter uptake, f5 is the basic frequency of network at
resting state, the parameter dt is the time delay between the release of neurotransmitter and the activation of
extrasynaptic receptors.

The main assumption of the equation (4) is that the tonic conductance is linearity depended on the
neurotransmitter.

With this biophysical mechanism, the model enables a feedback between the tonic current
conductance and the network dynamics, as we have shown earlier using simpler network configurations.

The second model

G, =G, + Rate*[GABA], (5)b

tonic

where

T/At
%= é%Ni n, —tp(GABA - GABA,)
a i

with [GABA] being concentration, 7 being calculation time, A¢ being bin time of calculation of AP number,
n; being the number of spikes in i-network within Az interval.

Parameter: VTonicGABA Description: Reverse potential of

VTonicGABA: -55 [mw] .
tonic current
GTonicGABA: 0.44 . P .
e f e Parameter: GTonicGABA Description: Conductance of tonic
YISV MToncGAHA [y current. If dynamicGTonicGABA is checked, then this
DetaVGABA: 10 [mv] parameter gives the initial condition.
AlphaTonic: 0s Parameter: v_rev_i Description: Reverse potential of synaptic
dynamicGTonicGABA: GABA
Parameter: DeltaVGABA Description: Difference between
GTonicGABAModel: |First w . .
i = reverse potential of i- and e- neurons
z Se- [mh] . P . :
Parameter: AlphaTonic Description: Ratio of tonic conductance
GTonicGABAControl: 0.1 [mS / cm2]

between e- and i-neurons.
Parameter: dynamicGTonicGABA Description: The type of

n

basicFrequency: [kHZ]

i i sl GTonicGABA model. Unchecked: no time dependency, it's a
enableFregDelay: constant equal GTonicGABA. Checked: the function of time
Frecelay: 50000 * t 4 defined by an ODE dependent on GTonicGABAModel.

Parameter: GTonicGABAModel Description: The type of
GTonicGABA model that can be either First or Second for the equations (6)a and (7)b respectively.

Parameters of the First model:

Parameter: Af Description: Rate of GABA concentration on frequency

Parameter: GTonicGABAControl Description: Rating tonic conductance

Parameter: basicFrequency Description: The basic frequency which keeps constant of Gtonic conductance

Parameters of the Second model:

Parameter: GO Description: Shift parameter

Parameter: Rate Description: Scale parameter

Parameter: V Description: Effective volume

Parameter: NV Description: Number of molecules release during of single AP
Parameter: Na Description: Avogadro number

Parameter: GABAb Description: Rating tonic concentration

17

Parameter: Gpump Description: Rate of GABA pumping

Parameter: enableFreqDelay Description: Whether to delay the frequency parameter.

Parameter: freqDelay Description: The delay for i-network frequency. Time delay between frequency modification
and conductance modification

Panel: Model (STDP)

Adopted mechanisms of synaptic plasticity

To simulate the processes of memorization, the model includes three common mechanisms of
synaptic plasticity: (a) spike-timing dependent plasticity (STDP), (b) frequency-dependent plasticity, and (c)
synaptic plasticity due to activation of a neighbouring astrocyte.

A distinct mechanism of synaptic plasticity implemented in the model deals with modifications of p
due to calcium-dependent astrocyte activity. The model is set so that when the calcium level inside an
astrocyte exceeds a chosen threshold, the astrocyte 'releases' signalling molecules (such as ATP or
adenosine) that affect p at neighbouring ei-synapses in tissue volume. Model provides an opportunity to
switch off the astrocyte network thus keeping p unchanged throughout.

Equation for the spike-time dependent plasticity (STDP)

To fit a wide range of STDP rules into a single instruction, the following formula was introduced:
s, S2
‘%W = A (1 - %j + A4 (1 - %} + 4,67 cos(C t)+ A, sin(S (e +d)) (8)

where W and dW are the synaptic weigh and its modification, ¢ is a time difference between the
presynaptic and postsynaptic APs. Parameters 4+, 4., Ac and As define the amplitude of dW. The model is
designed so that for a given synapse there is only one non-zero amplitude parameter. This method allows the
type of plasticity for a given synaptic connection to be chosen by using only parameters stored on the host
computer and leaving the compiled computational code on the cluster unchanged.

Parameters ., £, Si, S2, C, and S, characterise the time course of STDP and #, is nondimensional
scaling parameter.

Equations for frequency-dependent plasticity

The model provides a frequency dependent regulation of synaptic strength. The linear approximation
between the synaptic strength W and the presynaptic and the postsynaptic frequencies wpr. and wpos: 18
observed in different areas of the brain and described by a simple equation Eq.(9)

AW
W Atr(aa)pm, - ,Ba)p,e) 9)

where AW is the synaptic strength modification, which occurs in time Af; a and S set the synaptic
strength sensitivity to the presynaptic and postsynaptic frequencies, respectively; and 1 is a characteristic
time of synaptic modification.

The table of parameters for all type of synaptic plastisity

Parameter: enableSTDP Description: Whether to correct

&nableSTDP:

stapperiod 1000 matrices of synaptic conductance according to Hebbian theory
wndewessoR: [Parameter: stdpPeriod Description: How often Hebbian
importsTOP: [] . . L. .
e - _ - ¥ correction is done (in iterations)
= ; - - . Parameter: windowedSTDP Description: Whether smooth
— : g v " window (Epsilon) is applied in the analyzed STDP interval
tau, [ms*-1] 20 20 20 20) . ..
2 ° @ 0 " Parameter: importSTDP Description: Whether STDP models are
AC 0 0 0.2000 0
Tty | o e ame e jmported from text files
TmeseEin S —— Parameter: stdpParams Description: Parameters of spike-timing-
S sy ey eemo 9% dependant plasticity (Hebbian correction) for each matrix of
SinAmpl 10000 10000 10000 10000 .
SinPeriod 1.0000e-03 10000603 1.0000e-03 1.00008-03) Synaptlc conductance
damper 100 100 100 100) . .
maxAbsdW 0.0100 0.0100 00100 00100 Seeformula 5f0l" descrtptlon
preFreqFacter 0.0100 00100 0.0100 0.0100|
ostFreqFactor 0.0100 00100 0.0100 0.0100]
ffaqs;err:m\?sw 1 1 1 1 18
mainTermDivisor 1 1 1 1
imageMode:
whiteValue: 0 [mv]

blackValue: 1 [mv]

Parameter: stdpFile ee Description: Name of the file to import STDP model from (ee-interaction)

Parameter: stdpFile ei Description: Name of the file to import STDP model from (ei-interaction)

Parameter: stdpFile_ii Description: Name of the file to import STDP model from (ii-interaction)

Parameter: stdpFile_ie Description: Name of the file to import STDP model from (ie-interaction)

Parameter: stdpCommonParams Description: Common parameters of spike-timing-dependant plasticity

Parameter: imageMode Description: Whether to apply image drive to e-cells

Parameter: whiteValue Description: The value of the drive corresponding to white cells in the image

Parameter: blackValue Description: The value of the drive corresponding to black cells in the image

Panel: Model (X-Cur)

The basic state of ARACHNE includes a GUI table allowing to introduce any non-specific current
(tonic or phasic) lexre. The latter is given by expression

1

extra

= _gaxtm aepj beqj (V - K@)

(10)

with the maximum conductance gexi, the activation variable a., the inactivation variable b. and the
reversal potential V.. The powers p; and ¢; represent the number of gating states of the ionic channels and
are integers between 0 and 4 inclusively. Variables a. and b. are assumed to obey the first-order ordinary

differential equation

dx

— =k () (=x+x,F)),

dt

(x=a,,b,) (11)

The steady state values of x»(V) are sigmoid functions of the membrane potential

x, (V)=

1

Ltexp(=s,(V =7,))

(x=a,,b,), where Vy and s, represent the threshold and the slope of

the steady state curve, respectively. The rate coefficient k(V) has the following voltage dependency

k.(V)= icosh (#J, (x=a,,b,), where ¢ is a time constant.
t

X

The software provides a possibility to modify the kinetics using the GUI. In non-excitable astrocytes,
the membrane potential V is set to a constant, whereas the main dynamic variable is the intracellular calcium

concentration.

e=abkExiraCernani_e. [
el _m
e
acl e
=B
xEVa_ e
RESA_#!
eTa_n:
AV
weib s
xcTh e

enabietdraCurens [
%ok

%P L

]

{1
(el
[1dmv]
[res]
I
L]

[rme]

[y

[t
[1]
[rre]
Il
14 mv]

[rra]

The parameters can be modify using GUI.

Parameter: enableExtraCurrent ¢ Description: Whether to enable the extra
current for e-neurons

Parameter: xcG _e Description: The maximum conductance

Parameter: xcP_e Description: The multiplicity of gating elements in the ionic
channels

Parameter: xcQ_e Description: The multiplicity of gating elements in the
ionic channels

Parameter: xcVr_e Description: The reversal potential of this current
Parameter: xcVa_e Description: The threshold of the steady state curve in the
a ODE

19

Parameter: xcSa_e Description: The slope of the steady state curve in the a ODE
Parameter: xcTa_e Description: The time constant in the a ODE

Parameter: xcVb _e Description: The threshold of the steady state curve in the b ODE
Parameter: xcSh_e Description: The slope of the steady state curve in the b ODE
Parameter: xcTh_e Description: The time constant in the b ODE

Parameter: enableExtraCurrent i Description: Whether to enable the extra current for i-neurons
Parameter: xcG _i Description: The maximum conductance

Parameter: xcP_i Description: The multiplicity of gating elements in the ionic channels
Parameter: xcQ i Description: The multiplicity of gating elements in the ionic channels
Parameter: xcVr_i Description: The reversal potential

Parameter: xcVa_i Description: The threshold of the steady state curve in the a ODE
Parameter: xcSa i Description: The slope of the steady state curve in the a ODE
Parameter: xcTa_i Description: The time constant in the a ODE

Parameter: xcVb_i Description: The threshold of the steady state curve in the b ODE
Parameter: xcSb i Description: The slope of the steady state curve in the b ODE
Parameter: xcTh i Description: The time constant in the b ODE

Panel: Model (MOD-Cur)

Arachne supports importing custom currents from MOD files and embedding them into the modelled neurons. On this
panel, user can select the files and assign those parameters of the currents which are usually assigned in HOC code.
The set of MOD currents can be different for neurons of e-type and i-type, but it is the same within all neurons of one
type. By default, there is no MOD currents imported into the program. If there is more than 1 MOD file selected or
more than 1 current defined in a file, then all the currents are summed up.

User can tune the program to watch values of MOD currents in the selected neurons making settings on “Measured
(X/MOD-Cur)” and “Plot (X/MOD-Cur)” panels. If any neurons are selected for watching, the curves of the currents
versus time will be shown after the simulation completes or the progress snapshot is taken for the running simulation
with “SCRIPT_TakeSnapshot”.

After user imports any currents with GUI, the MOD files are translated into C++ code automatically to provide
maximum performance of computation for the currents. The new code is embedded into HPC kernel source code
which is recompiled automatically afterwards. As a result, starting simulation with new MOD currents takes longer
than usually. But if user uses the same set of MOD currents for the second time (including the same parameters
assigned for each current), the translation and compilation steps are skipped.

Currently Arachne does not provide full-fledged support of MOD files ignoring “UNITS”, “KINETIC” and some
other blocks.

Parameter: importMod_e Description: Whether to import MOD
files with extra currents for e-neurons

importdod_e:

modFiles_e: Select MOD file(s) .
Parameter: modFiles_e Description: Selector of MOD files with
modParams_e: |% ionleak.mod parameters: ~

modParams_e ionleak.gna = 2.7; extra currents for e-neurons

modParams_e.ionleak.gk = 1.4; ..

modParams_e ionleak gea = 3.5 Parameter: modParams e Description: Parameters of the

% kadist.mod parameters: imported currents for e-neurons

modParams_e kadist.celsius = 6.3; .. . Ty . :

S e Parameter: importMod_i Description: Whether to import MOD

files with extra currents for i-neurons

% na3n.mod parameters:
modParams_e.na3n.ena = 1.6,
modParams_e.nadn.celzius = §.3;

|Parameters of the imported MOD currents for E—neur0n5| 20

impertMod_i. []

Parameter: modFiles i Description: Selector of MOD files with extra currents for i-neurons
Parameter: modParams_i Description: Parameters of the imported currents for i-neurons

Panel: HPC

Parameter: fakeMPI Description: Whether to use the fake MPI version of gamma sumulator

Parameter: scalTest. Description: On/off scalability test unchecked: run HPC kernel once for number of processes
equal np and number of threads equal nt checked: run HPC kernel sequentially for number of processes equal
minNP , minNP + 1, ..., maxNP and number of threads equal 1, 2, ..., maxNT

Parameter: np Description: Number of MPI processes. The parameter specifies the number of parallel processes to
launch.

When you’re changing it and going to run simulation on the cluster, make sure that “np” does not exceed the
number of available cluster nodes. The number of available nodes is specified in the files “hostfile_BusyMaster” and
“hostfile_IdleMaster” living in the directory “/home/reviewer/gs/worker/hostfiles”. The first file corresponds to the
case when the master node works the same as a slave; the second file is for the case when the master node is not
loaded. In the case of scalability test (see “scalTest” parameter below) “np” specifies the maximum number of
processes in the test.

Parameter idleMaster. The parameter specifies whether the

fakeMPL [] master node of the cluster idles. true — all slave nodes do a job,
scalest [] the master node idles. false — all slave nodes and the master
. ; node do a job.

= i Parameter: nt Description: Number of OMP threads per MPI

process. The parameter specifies the number of threads per

remoteHPC: X X
process. While one process is run on one processor, one thread

loadedModes: . g 3 y . .
S (et ot e, R, R is run on one core of the processor. The best performance is

B L achieved when the number of processes equals number of
T ke % cluster nodes (i.e. the total number of processors) and the
; number of threads per process equals number of processor
scmiype_ei |KrnDense ~ . . .
cores. In the case of scalability test “nt” specifies the maximum
scmlype_ie. |KrnDense ~ .
number of threads per processes in the test.

1§ i | KrnD w . o 4 ..

e Parameter: minNP Description: Minimum number of MPI
SPA: v . ..

e processes. The parameter specifies the minimum number of
ERHASTL 100 [processes (cluster nodes) used in scalability test. (The
savelntermMat maximum number equals np.) Usage of this parameter is worth

saveBackupMats: [| when
e : & ' .a) memory deficit does not allow running
scalability test for small number of loaded cluster nodes;
c4cPerioditer: 100 [it] . .
b) testing for small number of processes is
EloRrtee 2 I=l expected to be too long or does not provide an interest.
st ‘output [.mat] Parameter: maxNP Description: Maximum number of MPI
saveinput20utput: processes
max_num_spikes_e_factor: 0.02 Parameter: maxNT Description: Maximum number of OMP

threads per MPI process

Parameter: remoteHPC Description: Whether to use remote High Performance Computing server unchecked: call
HPC kernel on this machine/cluster checked: call HPC kernel on remote machine/cluster

Parameter: loadedNodes Description: List of nodes to run simulation on

21

Parameter: zipMatFiles Description: Whether input/output MAT-files should be zipped before and unzipped after
transferring between local machine and head node of the cluster. unchecked: the files are transferred without
compressing checked: the files are compressed before and decompressed after transferring

Parameter: scmType _ee Description: Type of synaptic conductance matrix. These parameters specify the types of
synaptic conductance matrices. The type of a matrix determines how and where the matrix will be created and
populated, and what algorithm will be used for computation of the current on actual iteration
AllZeros: The matrix is not generated explicitly. All elements are zeros
AllEqual: The matrix is not generated explicitly. All elements are equal The matrix is not generated explicitly

because it has primitive structure. The main advantages of these types are:

a) matrix can have giant size not requiring a lot of memory;

b) calculation of the current on actual iteration has excellent performance.

But it’s clear that these models of synaptic conductance matrix are too simple and make sense only in
combination with other types.

Notice that these two types of matrices can be used only when useHC = false

HstDense: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in dense form

HstSparse: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in sparse form. The matrix is generated in MATLAB host program, saved to the input MAT-file with other
data, uploaded to the head node of the cluster and scattered among all nodes. The difference between dense and sparse
storage scheme is that only nonzero elements positions and values are stored in the second case. It provides memory
economy in the case if the number of nonzero elements is much less than the number of zeroes.

The main advantage of these two types is that the matrices can be populated in MATLAB in variety of ways.
There is no restriction on number of different values in a matrix. There is no need to recompile HPC kernel if
algorithm of matrix population is changed.

The disadvantages are as follows:

a) amount of physical memory on local machine and head node of cluster puts limitation on matrix size;

b) uploading big matrices to the head node may take a lot of time;

¢) scattering matrices from the head node to all nodes takes time as well.

Notice that type “HstSparse” can be used only when sclModel = BSD and useHC = false

KrnDense: The matrix is generated in HPC kernel before 1st iteration already in distributed form. An element
of the matrix is stored in floating-point-number format

KrnSparse: The matrix is generated in HPC kernel before 1st iteration already in distributed form.

The matrix is generated in sparse form the matrix is generated in distributed sparse form in HPC kernel.

The matrix is generated in HPC kernel before 1st iteration already in distributed form.

These types are counterparts of types HstDense and HstSparse that provide the advantage that there is no need
to upload and scatter big matrices. Since matrices are generated already in distributed form, the total amount of
memory required by a matrix is divided by number of cluster nodes. As a result, bigger matrices can be generated in
comparison with types HstDense and HstSparse. The disadvantage is that there is no such flexible way to populate
synaptic conductance matrices. If any changes in the algorithm, HPC kernel should be recompiled.

Notice that type “KrnSparse” can be used only when scIModel = BSD and useHC = false

KrnOneBit: The matrix is generated in HPC kernel before 1st iteration already in distributed form.

An element of the matrix is stored in one bit An element of the matrix is stored in one bit.

The matrix has dense structure and is generated in HPC kernel before 1st iteration already in distributed form.

The advantage of this mode compared with “KrnDense” type is that the matrix stored in bit-packed format
requires significantly less memory than the matrix stored in the floating-point format. The matrix of type “KrmOneBit”
can be populated with only two different values: zero value and some other value.

The feature of type “KrnOneBit” in comparison with other ones is that it requires rounding of number of rows
in the matrix: the number of rows has to be evenly divisible by 64. If this is not the case, the rounding is performed

22

automatically to the nearest integer that fits the requirement. As a result, the number of neurons used in simulation
becomes less.

Notice that type “KrnOneBit” can be used only when scIModel = BSD and useHC = false

KrnInPlace: The matrix is re-generated in HPC kernel on each iterations.

Parameter: scmType_ei Description: Type of synaptic conductance matrix. Each element is generated each
time it’s used.

The matrix is re-generated on each iteration once again. The random number generator that produces the
sequence of elements of the matrix is reseed with the same seed before each computation of the matrix-to-vector
product. This type of synaptic conductance matrix provides vanishing limitations of the model size, but the
performance of this type is the worst among all other types. The reason is that the call of random number generator for
each element takes considerable time in total.

Notice that type “KrnInPlace” can be used only when useHC = false

AllZeros: The matrix is not generated explicitly. All elements are zeros

AllEqual: The matrix is not generated explicitly. All elements are equal

HstDense: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in dense form

HstSparse: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in sparse form

KrnDense: The matrix is generated in HPC kernel before 1st iteration already in distributed form. An element
of the matrix is stored in floating-point-number format

KrnSparse: The matrix is generated in HPC kernel before 1st iteration already in distributed form.

The matrix is generated in sparse form

KrnOneBit: The matrix is generated in HPC kernel before 1st iteration already in distributed form.

An element of the matrix is stored in one bit

KrnInPlace: The matrix is re-generated in HPC kernel on each iteration
Parameter: scm Type_ie Description: Type of synaptic conductance matrix

AllZeros: The matrix is not generated explicitly. All elements are zeros

AllEqual: The matrix is not generated explicitly. All elements are equal

HstDense: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in dense form

HstSparse: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in sparse form

KrnDense: The matrix is generated in HPC kernel before 1st iteration already in distributed form. An element
of the matrix is stored in floating-point-number format

KrnSparse: The matrix is generated in HPC kernel before 1st iteration already in distributed form. The matrix
is generated in sparse form

KrnOneBit: The matrix is generated in HPC kernel before Ist iteration already in distributed form. An
element of the matrix is stored in one bit

KrnInPlace: The matrix is re-generated in HPC kernel on each iteration
Parameter: scmType_ii

Description: Type of synaptic conductance matrix AllZeros: The matrix is not generated explicitly. All
elements are zeros

AllEqual: The matrix is not generated explicitly. All elements are equal

HstDense: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in dense form

HstSparse: The matrix is generated in Matlab and saved to input MAT-file with other data. The matrix is
generated in sparse form

KrnDense: The matrix is generated in HPC kernel before 1st iteration already in distributed form. An element
of the matrix is stored in floating-point-number format

23

KrnSparse: The matrix is generated in HPC kernel before 1st iteration already in distributed form. The matrix
is generated in sparse form

KrnOneBit: The matrix is generated in HPC kernel before Ist iteration already in distributed form. An
element of the matrix is stored in one bit

KrnInPlace: The matrix is re-generated in HPC kernel on each iteration

Parameter: useSPA Description: Use Single Precision Arithmetics instead of double precision one. The parameter
specifies whether to use Single Precision Arithmetics instead of double precision one.

true — to use float data type in all computations. (4-byte floating-point numbers provide approx. 7 decimal
digits accuracy.)

false — to use double data type. (8-byte floating-point numbers provide approx. 16 decimal digits accuracy.)

In general, usage of floats instead of doubles leads to the better performance and worse accuracy.

But in the case of ARACHNE the worse accuracy is not relevant because the algorithm of simulation is so that
the noise is introduced into the data on each iteration explicitly. Therefore, the difference between single-precision
results and double-precision ones can be considered as a part of the intrinsic noise.

Parameter: distMatPVH Description: In what mode matrices of presynaptic voltage history will be presented
unchecked: local mode checked: distributed mode The parameter specifies in which mode matrices of presynaptic
voltage history are held.

true — matrices are held in distributed mode (each node of cluster keeps only part of each matrix).

false — matrices are held in local mode (each node of cluster keeps each matrix in whole).

If this option is enabled, amount of required physical memory per cluster node decreases, but the time of
simulation session considerably increases due to communication between processes.

Use distMatPVH = true only if there isn’t enough memory for local mode of presynaptic voltage history
matrices. In this case the number of processes has to be as little as it is possible.

Parameter: reportPeriodlter Description: How often HPC kernel should report its progress? The report will be done
once per iterations. The parameter specifies how often HPC kernel should report its progress (i.e. the number of
current iteration and the duration of an iteration). The report is done once per “reportPeriodlter” iterations.

Parameter: savelntermMat Description: Whether to save intermediate data file "intermediate.mat that makes it
possible to stop simulation and continue afterwards from the same point. The file is saved when: 1) specified t_final is
reached; 2) termination is requested by user; 3) saveBackupMats == true and current iteration number is evenly
divisible by backupPeriodlter . Notice that for avoidance of unpractical usage of physical memory this parameter can
be equal “true” only when distMatPVH = false.

Parameter: saveBackupMats Description: Whether backup files should be saved periodically. Saving backup files
makes it possible to recover simulation progress in the case of abnormal termination. If savelntermMat == false, then
only "output.mat" is saved, if savelntermMat == true, then both "output.mat" and "intermediate.mat" are saved
periodically.

Parameter: backupPeriodlter Description: How often backup files should be saved? The saving will be done once per
backupPeriodlter iterations.

Parameter: backgroundMode Description: Whether to run HPC kernel in background mode. The parameter specifies
whether to run HPC kernel in background mode.

true — HPC kernel is run in background mode (MATLAB can be idle).

false — HPC kernel is run in foreground mode (MATLAB is busy).

The key difference between foreground and background modes is that the second mode does not require
persistent connection between MATLAB host program and HPC kernel at time of the whole simulation session. In the
first mode HPC kernel dumps information about current progress into console and MATLAB host shows this output to
user as is. In the second case HPC kernel dumps information about current progress into status file from time to time
and MATLAB host picks it up periodically, analyses and shows current progress to user.

Parameter: c4sPeriodSec. Description: How often Matlab host should check the status of HPC kernel? (The status
check means that the host program determines if HPC kernel is running and if so, what the current iteration number
is.) The check is done once per c4ePeriodSec seconds. (c4e = Check For Execution.)

24

Parameter: PeriodlIter Description: How often HPC kernel should check for a command from Matlab host? (There are
two commands: terminate, dump snapshot.) The check will be done once per iterations.

Parameter: c4ePeriodSec Description: How often Matlab host should check if HPC kernel has executed requested
command? (There are two commands: terminate, dump snapshot.) The check will be done once per seconds.
Parameter: outFileName Description: Output MAT-file name

Parameter: savelnput2Qutput Description: Whether to save input parameters to output MAT-file

Parameter: max num_spikes e factor Description: The limit for number of spikes per one simulation session. It will
be used to preallocate the following arrays in HPC kernel: idx_e spikes, t e spikes and other. The limit for number of
spikes of a type is computed in HPC kernel as: max num spikes e = int32(num e * m steps *
max_num_spikes_e factor);

Parameter: max num_spikes i factor Description: The limit for number of spikes per one simulation session. It will
be used to preallocate the following arrays in HPC kemel: idx i spikes, t i spikes and other. The limit for number of
spikes of a type is computed in HPC kernel as: max num spikes i = int32(num i * m steps *
max_num_spikes_i_factor);

Panel: RNG (Random Number Generator)

e Eona o Parameter: eUpperBound Description: Maximum value of u_e
UpperBound: 0 Parameter: iUpperBound Description: Maximum value of u_i
e 5429 Parameter: hostSeed Description: Seed for Matlab random number generator

se Parameter: wuse32BitRng Description: Random Number Generator to use

unchecked: fine-grained 64-bit Random Number Generator checked: coarse-
grained 32-bit Random Number Generator. The parameter specifies whether to use

scmSeeds: -1:-1:-1000*4
uSeeds: 1:1000

releaseSeeds: 2001 : 3000
coarse-grained 32-bit random number generator or fine-grained 64-bit one.

true — to use coarse-grained 32-bit random number generator.

false — to use fine-grained 64-bit random number generator.

The 32-bit generator (std::mt19937) provides higher performance and worse quality of random numbers, while
the 64-bit generator (std::mt19937 64) provides lower performance and better quality of the numbers. Usage of the
64-bit generator makes sense only with double precision arithmetics (useSPA = false).

Parameter: scmSeeds Description: Random number generator seeds to generate matrices in HPC kernel

Parameter: uSeeds Description: Random number generator seeds to generate vectors u_e and u_i on each iteration
Parameter: releaseSeeds Description: Random number generator seeds to support release probabilities (i.e. space-
time-random connections between neurons)

Panel: Model (B-Cur). Kinetic (Kinetic of the basic currents)

The critical parameters BasicCurrentFactor e and BasicCurrentFactor i are modified from 0 to land indicate
the proportion of the basic I and e current.

If both of the parameters are 0 then the basic current are excluded from the model.

This is very important when the user adds own currents.

The biophysics description of kinetics constant of voltage gated current in i- and e-neurons with 4 basic

kinetics constant i1, m, n: Example of & kinetics for e-neurons

25

V)
(*7},) (P

j— ea j— eb2
a, = h,e s By =hye

7(V+h302))

_ & 1

= , Th =
a, + b, a, + B,

With basic voltage equation of e-neurons

dVe

e

——=g,(V,=V) + g m.(V,=V,) + gymh, (Vy,

dt

Parameter: h i v 1 Description: Defines the current in neurons
Parameter: m_i_v_1 Description: Defines the current in neurons
Parameter: n_i_v_1 Description: Defines the current in neurons
Parameter: h e v 1 Description: Defines the current in neurons

-V

e

Parameter: m_e v_1 Description: Defines the current in neurons

Parameter: n_e v 1 Description: Defines the current in neurons
Parameter: h i v 2 Description: Defines the current in neurons
Parameter: m_i_v_2 Description: Defines the current in neurons
Parameter: n_i v 2 Description: Defines the current in neurons
Parameter: h e v 2 Description: Defines the current in neurons

Parameter: m_e v_2 Description: Defines the current in neurons

Parameter: n_e v 2 Description: Defines the current in neurons
Parameter: h i a 1 Description: Defines the current in neurons
Parameter: m_i_a_1 Description: Defines the current in neurons
Parameter: n i a 1 Description: Defines the current in neurons
Parameter: h e a 1 Description: Defines the current in neurons
Parameter: m_e a1 Description: Defines the current in neurons
Parameter: n_e¢ a 1 Description: Defines the current in neurons
Parameter: h i a 2 Description: Defines the current in neurons
Parameter: m_i_a_ 2 Description: Defines the current in neurons
Parameter: n i a 2 Description: Defines the current in neurons
Parameter: h e a 2 Description: Defines the current in neurons
Parameter: m_e a2 Description: Defines the current in neurons
Parameter: n_e¢ a 2 Description: Defines the current in neurons
Parameter: h i b 1 Description: Defines the current in neurons
Parameter: m_i_b_1 Description: Defines the current in neurons
Parameter: n_i b 1 Description: Defines the current in neurons
Parameter: h_e b _1 Description: Defines the current in neurons

Parameter: m_e b_1 Description: Defines the current in neurons

Parameter: n_e b _1 Description: Defines the current in neurons
Parameter: h_i b 2 Description: Defines the current in neurons
Parameter: m_i_b_2 Description: Defines the current in neurons
Parameter: n_i_b_2 Description: Defines the current in neurons
Parameter: h_e b 2 Description: Defines the current in neurons

Parameter: m_e¢ b 2 Description: Defines the current in neurons

Parameter: n_e b 2 Description: Defines the current in neurons

Parameter: phi Description: Defines the current in neurons

26

)

Panel: Initial Conditions

Initial condition for dynamics variances

Parameter: v_e¢ Description: Voltage of e-neuron at time 0.

Parameter: n_e Description: Kinetics constant

Parameter: m_e Description: Kinetics constant

Parameter: h_e Description: Kinetics constant

Parameter: s_e Description: Kinetics constant

Parameter: v_i Description: Voltage of i-neurons

Parameter: n_i Description: Kinetics constant

Parameter: m_i Description: Kinetics constant

Parameter: h_i Description: Kinetics constant

Parameter: s i Description: Kinetics constant

Parameter: s_stoch_e Description: Parameter of synaptic activation of e-neurons
Parameter: s stoch i Description: Parameter of synaptic activation of inter neurons

Panel: Init. Cond. (Astro)

Parameter: Ca Description: Calcium concentration in astrocyte
Parameter: ip3 Description: Concentration of [P3

Parameter: q Description: Kinetic parameter of Ca current
Parameter: y Description: Rate of release of IP3

Panel: Init. Cond. (X-Cur)

Parameter: xcA e Description: Vector of activation variables for e-neurons
Parameter: xcB_e Description: Vector of inactivation variables for e-neurons
Parameter: xcA i Description: Vector of activation variables for i-neurons
Parameter: xcB i Description: Vector of inactivation variables for i-neurons

Panel: Measured

Parameter: opRadii Description: Radii of the observation points in polar coordinate system

Parameter: opAngles Description: Angles of the observation points in polar coordinate system

Parameter: electrolCond Description: The electolytic conductance

Parameter: stabAnalysis Description: Stabilization analysis mode unchecked: compute Frequency e, Frequency i,
syncoef e, syncoef i just once at the end of the simulation; checked: compute Frequency e, Frequency i,
syncoef e, syncoef i on each iteration (this affects performance and does not follow the original Matlab
code). On/off stabilization analysis mode.

true — to compute “Frequency e”, “Frequency i”, “syncoef e”, “syncoef i” on each iteration and to show plots at the
end of simulations.

false — to compute “Frequency e”, “Frequency i”, “syncoef e”, “syncoef i” just once at the end of simulations.

Notice that computation of the parameters on each iteration affects performance.

Parameter: gatherSCM Description: Show matrices of synaptic conductance at end of simulation

Parameter: watchGTonicGABA Description: Whether to collect data GTonicGABA vs time

27

Parameter: watchedCellldx e Description: Array of indexes of e-cells to watch presynaptic voltage of (the curves of
voltage vs time will be shown)

Parameter: watchedCellldx i Description: Array of indexes of i-cells to watch presynaptic voltage of (the curves of
voltage vs time will be shown)

Parameter: watchedSynldx ee Description: Array of indexes of ee-synapses to watch synaptic conductance for

Parameter: watchedSynldx ei Description: Array of indexes of ei-synapses to watch synaptic conductance for

Parameter: watchedSynldx ie Description: Array of indexes of ie-synapses to watch synaptic conductance for

Parameter: watchedSynldx ii Description: Array of indexes of ii-synapses to watch synaptic conductance for

Parameter: frequencyParam Description: Network frequency

Parameter: syncoefParam Description: Network synchronization

Panel: Measured (Astro)

Parameter: watchedAstroldx

Description: Array of indexes of watched cells that specifies: 1) astrocytes to watch Ca of (the curves of Ca vs time
will be shown); 2) astrocytes to watch the activation parameter "y" of; 3) e-neurons to watch the release
probability "e->1" of (the curves of releaseProb_ei vs time will be shown). The array can be empty.

Parameter: gatherCaColormap Description: Whether to gather data for Ca colormap

Parameter: caColormapPeriodlter Description: How often to get the Ca vector being a column of the colormap (in
iterations)

Panel: Measured (X/MOD-Cur)

Parameter: watchedExtraCurrentldx ¢ Description: Array of neurons indexes to watch extra currents in e-network.
Parameter: watchedExtraCurrentldx i Description: Array of neurons indexes to watch extra currents in i-network.
Parameter: watchedModCurrentldx e Description: Array of neurons indexes to watch MOD-currents in e-network.
Parameter: watchedModCurrentldx i Description: Array of neurons indexes to watch MOD-currents in i-network.

Panel: Plot

Parameter: plotRastr Description: Plot rastergram

Parameter: plotQR Description: Plot the quality of recall coefficient

Parameter: plotQRPeriod Description: Plot 1/Frequency e computed from the beginning of the latest recall session

Parameter: plotSCM Description: Plot synaptic conductance matrices

Parameter: plotFrequency Description: Plot network frequencies

Parameter: plotSynCoef Description: Plot network synchronization coefficients

Parameter: winSizeDivisor Description: The parameter used when moving averages and moving sample standard
deviations are computed. Size of the moving window is computed as size of the signal divided by
winSizeDivisor. The lower value of the divisor, the stronger smoothing.

Parameter: stdDevFactor Description: The factor used when we plot range "moving average +- stdDevFactor *
moving sample standard deviation"

Parameter: plotGTonicGABA Description: Plot GTonicGABA

Parameter: plotPresynVoltages Description: Plot presynaptic voltage vs time for selected neurons

Parameter: plotSynCondVsTime Description: Plot synaptic conductance vs time for selected synapses

Parameter: plotPotentials Description: Plot potentials in observation points

28

Parameter: plotSpectra Description: Plot power spectra of potentials in observation points

Parameter: num FreqFactor Description: Bin calculation of extracellular field (spectrum). The number of frequencies
to show in the spectra: numFreq = numFreqFactor * numTicks where numFreq is the number of frequencies,
numTicks is the number of time steps.

Parameter: subtractMean Description: Whether to subtract mean value from potentials to delete the impulse in
spectra at zero frequency

Parameter: winType Description: Type of weight window used to preprocess the potentials in order to suppress side
lobes of impulses in the spectra. Use '@rectwin' to turn off this kind of preprocessing. See the list of
supported window types here: http:/www.mathworks.com/help/signal/ref/window. If Signal Processing

Toolbox is not installed, then rectangular window is used.
Parameter: winOpts Description: Parameters of the window (see for types info)

Panel: Plot (Astro)

Parameter: plotCaStyle Description: Plot style for calcium curves:

e DoNotPlot: Do not plot any curve;

e PlotCurvesSeparately: Plot each curve separately (on individual figure);

e PlotCurvesTogether: Plot all curves together (on the same figure).
Parameter: plotActParamStyle Description: Plot style for activation parameter curves
Parameter: plotReleaseProbStyle Description: Plot style for release probability curves
Parameter: plotCaColormap Description: Whether to plot Ca colormap

Panel: Plot (X/MOD-Cur)

Parameter: plotStyleExtraCurrent_e Description: Plot style for Extra current for e-neurons curves:
e DoNotPlot: Do not plot any curve;
e PlotCurvesSeparately: Plot each curve separately (on individual figure);
e PlotCurvesTogether: Plot all curves together (on the same figure).
Parameter: plotStyleExtraCurrent_i Description: Plot style for Extra current for i-neurons curves
Parameter: plotStyleModCurrent_e Description: Plot style for MOD current for e-neurons curves
Parameter: plotStyleModCurrent i Description: Plot style for MOD current for i-neurons curves

How to change parameters on the remote cluster.

1. Change or delete the parameters.

2. Log in to the master node and open the following C++ file:

“/home/reviewer/gs/worker/*** h”.

3. Update the code for the function “AtomicCorrection” as you need. Notice that in C++ the numbering
of array elements begins from zero.

4, Compile HPC kernel running script “build Linux RELEASE.sh” living in the same directory.

If compilation is successful, the MATLAB host program being run for the next time will use the new just
compiled HPC kernel.
(Example) How to changing deterministic external drives to E- and I-cells

1. Log in to the master node and open the following file:
“/home/reviewer/gs/worker/External Drives.cpp”.
2. Update the code for the functions “ComputeExternalDrive_e” and “ComputeExternalDrive i” as you

need.
You can follow the example provided in the file “ExternalDrives.cpp” for the case of “I e being

29

I e(t, idx) = sin(PI - idx / (num_e — 1)) exp(-0.5 - t)

with “idx” being end-to-end index of the distributed vector: idx =0, 1, ..., num e — 1.

3. Compile HPC kernel running script “build Linux RELEASE.sh” living in the same directory.

If compilation is successful, the MATLAB host program being run for the next time will use the new just
compiled HPC kernel.

(Example) Changing system of equations

The system of equations is defined by the following functions: “h_e inf’, “h i inf”, “m e inf”, “m i inf”,
“n_e_inf”, “n_i_inf”, “tau_h_e”, “tau_h i”, “tau n_e”, “tau n_i”.

Each function is defined in a separate CPP file under the following directory:

“/home/reviewer/gs/worker”.

The exception is for functions “m_e inf” and “m_i_inf”. They are in both C++ files (“m_e inf.cpp” and
“m_i_inf.cpp”) and MATLAB files (“m_e infm” and “m i inf.m”). If any changes, make sure that the code is
identical in corresponding files.

When you are changing any functions, follow these rules:

4, Make sure that a function does not encounter uncertainty for some specific values of input argument.
For example, function “m_e_inf” encounters uncertainty 0 / 0 in the cases when input argument v equals —54 and —27.
You must provide special handling of the cases because otherwise the function can return NaN (Not-A-Number) at
some moment of simulation making all further process spoiled.

5. Avoid usage of types float or double explicitly, use template type T instead. Each function is compiled
in two versions: T = float and T = double. The version used at time of simulation depends on value of variable
“useSPA” specified in file “HpcParams.m”. Do not specify rational constants as 1.2 or 3.4 because they would have
double type, specify them as T(1.2) and T(3.4) instead. However, integer constants can be specified without indication
of type T.

6. Avoid division of integer numbers. For example, defining variable x as

T x =T(0.5) + 1/ 3; you will actually have x equal T(0.5). The reason is that quotient of integer numbers is

rounded to integer. The correct forms are:

Tx=T(0.5)+T(1)/3;
Tx=T(0.5)+1/T(3);

7. Do not forget to compile HPC kernel running script “build_Linux RELEASE.sh” living in the same
directory.

If you added some new functions, make sure that they are specified with “inline” keyword and listed in files
“GammaSimulator.h” and “GammaSimulator.cpp”.

(Example) Choosing and initialization of random number generators
Random number generators are used in three places.

1. The MATLAB host program uses one to prepare input data for the simulation.
The generator is initialized with the seed specified by variable “seed” in file “PreparelnputData.m”.
2. If “scmType XY is equal to “KrnDense”, “KrnSparse”, “KrnOneBit” or “KrnInPlace”, then

the C++ worker program uses one generator per thread to initialize local chunks of distributed matrices
“g ee”, “g el”, “g ie”, and “g ii”. Each thread must have random number generator initialized with unique
seed. If “scmType XY” is equal to “KrnInPlace”, then the matrices are generated SAME on different
iterations.

The seeds for all threads of all processes are collected into one-dimensional array “scmSeeds” defined
in file “PreparelnputData.m”. This array is saved to input MAT-file with other data. Each value of a seed,
including positive values and negative values, corresponds to unique state of random number generator.

The requirements for “scmSeeds” are as follows:

a) “scmSeeds” must be integer vector of length not less than np - nt - 4;

b) “scmSeeds” must contain values in range [-2147483648, 2147483647] except 0;

¢) “scmSeeds” must not contain equal values;

30

d) “scmSeeds” must not overlap with “uSeeds” (see below).

3. The C++ part of the software uses one generator per thread to initialize the local chunks of
distributed vectors “u_e” and “u_i” in the file “DoSimulation.cpp”. Each thread must have random number
generator initialized with a unique seed. The DIFFERENT vectors are generated on different iterations.

The seeds for all threads of all processes are collected into one-dimensional array “uSeeds” defined in
the file “START _Arachne.m.” This array is saved to the input MAT-file with other data. Each value of a seed,
including positive values and negative values, corresponds to unique state of random number generator.

The requirements for “uSeeds” are as follows:

a) “uSeeds” must be integer vector of length not less than np - nt;

b) “uSeeds” must contain values in range [-2147483648, 2147483647] except 0;

¢) “uSeeds” must not contain equal values;

d) if “scmType XY” is equal to “KrnDense”, “KrnSparse”, “KrnOneBit” or “KrnInPlace”, then
“uSeeds” must not overlap with “scmSeeds”.

It’s possible to choose quality of random number generators used in HPC kernel. Boolean variable
“use32BitRng” defined in the file “HpcParams.m” switches between 32-bit and 64-bit random number generators.
32-bit generator std::mt19937 produces integer random numbers in the interval [0, 2°%). When these numbers
are converted to floating-point ones and projected to the interval [0, 1), the step of the grid becomes equal approx.
2.3283 - 107'°, 1t's sufficient when useSPA = true because the step supported by the floats
eps(single(1)) = 1.1921 - 107",
But it's not sufficient when useSPA = false because the step supported by the doubles
eps(double(1)) = 2.2204 - 10716,
64-bit generator std::mt19937 64 produces integer random numbers in the interval [0, 2°4). When these
numbers are converted to floating-point ones and projected to the interval [0, 1), the step of the grid becomes equal
approx. 5.4210 - 10, It’s sufficient for reaching the limit of granularity of double-precision arithmetic.
Changing Parameters in the case of simulation continuation
If the parameter “savelntermMat” is specified as true, then HPC kernel saves all necessary data so that
simulation can be continued after stopping. In that case you cannot change any parameters of simulation; it will
continue with the same parameters independently on any changes made in files “HpcParams.m” and
“ModelParams.m”. The only exception is for the following three parameters:
1) np — the number of processes;
2) nt — the number of threads per process;
3) idleMaster — the flag indicating whether the master node idles.
You can change these parameters, and this change will be applied in the next simulation session. The only
restriction is that the product np * nt must be the same as before.

Model restrictions, memory requirements and performance

Bit synaptic conductance matrices

Synaptic conductance matrices have a bit structure if scmType XY = KrnOneBit. They provide compromise
between the cases “performance is low, but big models are allowed” (scmType XY = KrnInPlace) and “performance is
high, but big models are not allowed” (scmType XY = KrnDense). The principal limitation of the 1-bit mode is that a
synaptic conductance matrix can be populated with only two different values (zero and some other value).

In order to achieve the best performance, the number of rows in 1-bit element matrix should be evenly
divisible by 64. If this is not the case, then the number of rows (and the number of neurons of a type) is rounded to the
nearest less integer that is evenly divisible by the factor.

Let’s consider the following example:

num_e = 3000; num_i= 5000;

scmType ee = KrnSparse; scmType ei = KrnOneBit;

scmType ie = KrnSparse; scmType ii = KrnSparse.

31

The type “scmType ei” requires rounding of number of neurons (since it is equal to “KrnOneBit”), while
three other types do not require any rounding. The number of rows in matrix “g ei”, i.e. “num_e”, should be evenly
divisible by 64. As a result, the numbers of neurons will be rounded as follows:

num_e = 2944; num i = 5000.

Memory allocated on a cluster node

The memory requirements are checked by the function that lives in the file
“host\OtherUtils\CheckMemReq.m”. If memory allocated by four synaptic conductance matrices and four matrices of
presynaptic voltage history exceeds the threshold “memPerNodeLimit”, then the function prevents simulation
launching to avoid the memory deficit on cluster nodes.

Each type of synaptic conductance matrix specified by “scmType XY” parameter has specific memory
requirements checked by the function that lives in the file “host\OtherUtils\CountMatrixMemReq.m”. The
requirements for physical memory per cluster node (in MB) for synaptic conductance matrices are estimated as
follows:

Synaptic conductance Memory allocated for the matrix on a cluster node (in
matrix type MB)
AllZeros reqMemPerNode = 0.
AllEqual This is a rough estimate that takes into scope that the
KrnInPlace matrices are not stored in memory explicitly.
HstDense reqMemPerNode = numElem - elemSize - (np +1) / np /
220

with “numElem” being the number of elements in the
matrix,

“elemSize” being the size of an element. The size is equal 4
if useSPA = true and 8 otherwise.

This estimate takes into scope that the most memory is
allocated on the master node after loading of the matrix from MAT-
file and scattering.

HstSparse reqMemPerNode = (f(intSize) + f(intSize / 2) / np) / 2%

with f(size) = numElem - (elemSize + size) + (numCols +
1) - size,

“numElem” being the rough estimate of the number of
nonzero elements in the matrix which depends on the height and
the standard deviation of the bell:

numElem = round(w_max - (exp(-A?) - 1 + A - sqrt(n) -
erf(A)) / B),

B = A?/ (numRows - 1) / (numCols - 1),

A =sqrt(0.5) - (max(numRows, numCols) - 1) / sigma,

“elemSize” being equal to 8 (MATLAB does not support
single-precision sparse arrays),

“intSize” being equal to 8 (MATLAB does not support 4-
bit integer sparse arrays).

This estimate takes into scope that the most memory is
allocated on the master node after loading of the matrix from MAT-
file and scattering.

KrnDense if useHC = true and savelntermMat = true or showSCM =
true

reqMemPerNode = numElem - elemSize - (np +1) /np /
220

else

reqMemPerNode = numElem - elemSize / np / 2%.

The estimate is similar to that one for “HstDense”, but if
we don’t need to gather the matrix on the master node for writing to
MAT-file this estimate is (np + 1) times lower.

KrnSparse reqMemPerNode = (numElem - (elemSize + intSize) +

32

(numCols + 1) - intSize) / np / 2%
with “numElem” being similar to that one for “HstSparse”,
“intSize” being equal 4,
“elemSize” being the size of an element. The size is equal 4
if useSPA = true and § otherwise.

KrnOneBit

reqMemPerNode = numElem / blockSize - intSize / np /
220

with “numElem” being the number of elements in the
matrix,

“blockSize” being 64,

“intSize” being 8.

When scalability test is run, the worst value for number of processes “minNP” is substituted instead of “np”.

Notice that mode “KrnOneBit” requires the number of rows in the matrix to be evenly divisible by the 64. If
this is not the case, rounding to the nearest lower integer value that fits the requirement is performed. As a result,
allocated memory becomes lower (see previous paragraph).

The requirements for physical memory per cluster node (in MB) for presynaptic voltage history matrices
depend on value of variable “distMatPVH” (see the paragraph The file "HpcParams.m") and are estimated as follows:

distMatPVH Memory allocated for the matrix on a cluster node (in MB)
false reqMemPerNode = numElem - elemSize / 2%
with “numElem” being the number of elements in the matrix,
“elemSize” being the size of an element. The size is equal 4 if useSPA = true and
8 otherwise.
true reqMemPerNode = numElem - elemSize / np / 22

The estimate is similar to that one for distMatPVH = false, but np times lower

Notice that if savelntermMat = true, we have to gather presynaptic voltage history matrices for writing them
to intermediate MAT-file, i.e. the memory for whole matrix has to be allocated on master node. Therefore this value of
variable “sacelntermMat” is forbidden when distMatPVH = true to avoid unpractical usage of memory.

Limitations of the number of neurons caused by memory requirements

Let’s consider the following example:

num e =2 - num i; radius_e = 250; radius_i=200; v =0.1; scIModel = BSD; useHC = false;

w_ee max =2; w_ii_ max = 0.8; w_ei max =0.9; w_ic_ max =0.3;

sigma_ee = 100; sigma_ei = 75; sigma_ie = 75; sigma_ii = 50;
np = 9; useSPA = true; savelntermMat = false; memPerNodeLimit = 1700.
The maximum number of neurons with which simulation can be launched is estimated as follows:

semType XY Maximum number of neurons

- distMatPVH = true distMatPVH = false
KrnDense num_e = 29000; num i= 14500 num_e = 8800; num i = 4400
KrnSparse num e = 39600; num i= 19800 num e = 8800; num i = 4400
KrnOneBit num e = 39400; num i= 19700 num e = 8800; num i = 4400
KrnlnPlace num e = 40000; num i= 20000 num e = 9000; num i=4500

Performance of ARACHNE

The main parameters that determine ARACHNE performance are the following:

[T331IN

1"

1)
2)
3)
4)
5)

6)

the number of processes “np”’;

the number of threads “nt”;

the numbers of neurons “num_e” and “num_i”;
29 ¢

the parameters of ring networks “radius_e”, “radius i and “v”’;
p g _C, _ ;
the types of synaptic conductance matrices “scmType XY with “XY” being “ee”, “ei”, “ie”,

the mode of presynaptic voltage history matrices “distMatPVH”;

33

7) the variable “useHC” which specifies whether to correct synaptic conductance matrices
according to Hebbian theory;

8) the maximum heights of corresponding bells “w_XY max” (for sparse matrix only);

9) the standard deviations of corresponding normal distributions “sigma XY (for sparse matrix
only).

In general case, the most time-consuming operation performed on each iteration is computation of the actual
current. This operation has quadratic complexity while other operations have linear complexity. The current is
computed 8 times on each iteration. For each matrix of synaptic conductance (“g ee”, “g ei”, “g ie”, “g ii”) the
operation is provided twice.

Let’s consider complexity of current computation for a matrix “g XY of size “num_X” by “num_Y”. Denote
Ni; = num X + num_Y — the sum of height and width of the matrix, N> = num X - num_Y — the number of elements
in the matrix, N3 — the number of nonzero elements in sparse matrix which depends on “num X", “num Y,
“w_XY max” and “sigma XY”, n = np - nt — the total number of workers. Then complexity of current computation
for the matrix “g XY” is estimated as follows:

Synaptic conductance Complexity
matrix type
AllZeros O(num_Y / n)
AllEqual O(N;/2/n)
HstDense ON2/2/n)
KrnDense
KrnOneBit
KrnInPlace
HstSparse if distMatPVH =
KrnSparse false
O(Ns3 /n)
if distMatPVH =
true
O(N3 - num_X /
2 /n)

That means that doubling of the number of workers and preserving all other parameters unchanged brings
halving of calculation time. The statement is true with the following remarks:

1. When ARACHNE is running with distMatPVH = true, this statement is true only if number of
neurons and processes is rather little. The cause of this effect is that communication between processes on
each iteration becomes huge when the number of neurons is rather big. Usually with little number of neurons
and processes the mode distMatPVH = false with better performance can be used. If there is a memory deficit
and ARACHNE can be running only with distMatPVH = true, the number of processes must be as little as it is
possible.

2. When ARACHNE is running with np > I, there is the overhead due to communication
between processes. As a result, performance for np = 2 becomes approximately twice better than performance
for np = I only when the number of neurons is large enough to compensate the overhead.

3. When ARACHNE is running with nt > I, the overhead due to communication between
threads is much less than overhead due to communication between processes. As a result, performance for
nt = 2 becomes approximately twice better than performance for nt = I for much less number of neurons, than
it was necessary in the point 1.

4, The “O” symbol used in the table denotes linear dependence on the argument, but does not
state the slope coefficient. The slope depends on synaptic conductance matrix type. For example, the slope for
“KrnInPlace” matrix type is higher that the slope for “KrnDense” matrix type. (The product is computed
slower for the first type and faster for the second type.) At the same time, the slope coefficients are equal for
the following types of synaptic conductance matrices:

a) “HstDense” and “KrnDense”;

34

b) “HstSparse” and “KrnSparse”.
Scalability curves for different types of matrices
Let’s consider the following example:
num_e = 8700; num_i=4350; radius_e = 250; radius_i=200; v=10.1;
sclModel = BSD; useHC = false; t final = 0.2;
w_ee max =2; w_ii_max=0.8; w_ei_max =0.9; w_ie_max = 0.3;
sigma_ee = 1000; sigma_ei = 750; sigma_ie = 750; sigma_ii = 500;
scalTest = true; np = 9; nt = 4; minNP = §; useSPA = true; use32BitRng = true;
memPerNodeLimit = 1700; stabAnalysis = false; savelntermMat = false; saveBackupMats = false.

When distMatPVH = false the simulation scales, but the scalability is far away from the ideal. The cause of
this effect is memory deficit which make impossible to consider enough neurons to show real scalability.

T T 018 T
a1sl ﬁ[—,—ﬂ’__—,__—’—‘ a&;@?
= 016 e
O “6
fege———— T 014 e
— 04 r =
8 8 012
&
2 DLT2 e %
2 G 2 oy
= =1 I
g 0.1+ i %
S aosh E O 08 T
@ @
£ £
= oost 008}
i = ———— Num. threads per process = 1
(8 G| RSP J —— Num. threads per process = 1 0.0 peeeeeneees “:| ——— Num. threads per process = 2
——+—— Nurn. threads per process = 2 —— Num. threads per process = 3
002h- ———Num. threads per process = 3 002r +— Num. threads per process = 4
——— Num. threads per pracess =4
o i T 0 i i
T 3 9 7 8 9
MNumber of processes MNumber of processes
Picture 4.1. scmType XY = KrnDense Picture 4.2. scmType XY = KrnSparse
T T T
e2r G ; ﬁ/
- 04t = : 1
= R o DB
& 0aal : : z
5 . 5 m/
£ oa2p ER =]
@ : €
k=i k=]
g OB o e e e g 004k ﬂ:ﬂ——’__’_—' e
= =
S aost =
e ——— MNum. threads per process = 1 —
0045 e ieo| ——— Num. threads per process = 2 oozk e mrm” Emzzgi DZLPEEZEE :; |
——— Num. threads per process = 3 N hread RECD :3
002- ——— Num. threads per process = 4 g Areadsponprocess =
- —— Num. threads per process =4
1 i 0 i i
07 8 9 7 8 9 il
MNumber of processes MNumber of processes
Picture 4.3. scmType XY = KrnOneBit Picture 4.4. scmType XY = KrnlnPlace

When distMatPVH = true there is no scalability in most cases because of active communication between
processes. The simulation scales only with little number of neurons and processes, i. . when communication between
processes isn’t very sizeable, but in this case the option distMatPVH = false is better to use.

Structure of MATLAB host program
The main file of the host program is “START _Arachne.m”. It’s used for

a) starting of simulation from scratch;

b) attaching to and monitoring of simulation running in background at the moment;

c) continuing previous simulation session or continuing simulation after a crash and a recovery;
d) running scalability test;

e) grabbing results of previous simulation session and showing them to user.

The next three scripts are used for servicing of background simulation mode:

35

1. “SCRIPT_GetSnapshot.m” — this script does the request to HPC kernel to dump current
results of simulation. After the dumping, the results file “output.mat” is taken by the host program
(downloaded if remoteHPC = true or copied otherwise) and analysed. Then the results are shown to user
graphically. When HPC kernel creates a snapshot, it also creates a backup point that can be used for progress
recovery.

2. “SCRIPT_TerminateBackgroundProcess.m” — this script does the request to HPC kernel
to save current results and terminate.
3. ‘SCRIPT_KillBackgroundProcess.m” — this scripts terminates all HPC kernel processes

forcibly. Current progress is lost, but it’s possible to recover some old progress from backup file(s) if the
variable “saveBackupMats” was equal “true”.
Notice that the scripts 1 and 2 described above execute asynchronous operations between host and kernel,

therefore, require some time. They are controlled by variables c4cPeriodlter and c2ePeriodlter defined in the file
“HpcParams.m”.

The next two scripts are used for other servicing of ARACHNE:

1. “SCRIPT_RecoverBackupProgress.m” — this script recovers progress of simulation from
the latest backup file(s). It’s worth in the case if simulation was stopped unexpectedly for some reason not
depending on the program (e.g. impact of hardware, network, other software etc.). In order to make
ARACHNE save backup file(s) periodically, specify saveBackupMats = true in the file “HpcParams.m”. Both
files “output.mat” and “intermediate.mat” are subjects of recovery, but the latter file can be recovered only if
simulator was set up to save the file (i.e. savelntermMat = true). There are two backup storages used by HPC
kernel in turn and backup storage pointer file that points to the storage that will be used for saving next time.
Such approach makes it possible to recover even in the case if crash happens at the moment of backup file(s)
saving.

2. “SCRIPT_CleanUp.m” — this script cleans up HPC kernel I/O directories (see the paragraph
below). After running of the script, it’s impossible to get results of the latest simulation, continue or recover
progress. All the data are deleted. Simulation can be run only from scratch.

The script “UTILITY_GetMaxModelSize.m” is used to get the maximum size of model which meets

memory requirements. It calls “ModelParams.m” and “HpcParams.m” to initialize all required parameters except of

“num_e” and “num_i”, asks user to enter the ratio “num_i / num_e” and computes the maximum number of neurons
for adjusted model and HPC parameters.

Structure of HPC kernel
Source code

File Description

main.cpp The file contains ARACHNE HPC kernel entry point function
“main”. It reads variables “useSPA” and “use32BitRng” from input MAT-
file and calls templated function “main_templated” with appropriate type
arguments. The templated function calls three modules to read all other
stuff of the MAT-file, run the simulation itself and save results to output
MAT-file(s).

MatFilelOUtils.h Utility functions to read scalars, vectors and matrices from input
MatFilelOUtils.cpp | MAT-file and broadcast or scatter them among processes.
Utility functions to save scalars, vectors and matrices to output

MAT-files.
GammaSimulator.h Templated class containing all data and functions comprising
GammaSimulator.c | internal logic of33 simulation.
pp
ReadAllocateWrite. The modules of ARACHNE responsible for reading of all variables
cpp from input MAT-file, allocating memory for them and other internal
objects, writing of simulation results to output MAT-files.
DoSimulation.cpp The time evolution cycle module.
UpdateldxTNumSp Selection of cells spiked at current time step. Update of the arrays

36

ikes.cpp that track spiked cells.

h e inf.cpp The functions defining system of equations. In the most they
h i inf.cpp migrated from the original software without changes. The only new feature
m_ e inf.cpp is the control of uncertainties added to avoid spoiling of simulation in the
m_i_inf.cpp case if a function encounters division 0/ 0.

n e _inf.cpp

n_i _inf.cpp

tau h e.cpp

tau h i.cpp

tau n_e.cpp

tau n_i.cpp

ExternalDrives.cpp

The functions defining external drives to E- and I-cells (migrated
from file “params.m”).

LocalVector.h Templated class representing local vector being analogue of one-
LocalVector.cpp dimensional dense array in MATLAB.
DistVector.h Templated class representing distributed vector, i.e. the vector with
DistVector.cpp data evenly divided among processes.
ScmType.h Enumerable that specifies the type of synaptic conductance matrix.
LocalMatrix.h Templated class representing local dense matrix being analogue of
LocalMatrix.cpp two-dimensional dense array in MATLAB.
LocalSparseMatrix. Templated class representing local sparse matrix being analogue of
h two-dimensional sparse array in MATLAB. The difference is that
LocalSparseMatrix. | MATLAB does not support single-precision sparse arrays, while this class
cpp does support.
DistMatrixBase.h Templated abstract base class for all distributed matrix classes:
“ZeroDistMatrix”, “ConstDistMatrix”, “DistMatrix”, “DistSparseMatrix”,
“OneBitDistMatrix” and “InPlaceDistMatrix”. The class represents a matrix
with columns evenly divided among all processes (i.e. each process
contains all the rows, but only some number of columns). All the classes
derived from this class must implement the method that computes the
current on actual iteration.
ZeroDistMatrix.h Templated class representing distributed matrix with all elements
ZeroDistMatrix.cpp | equal zero. The class is used if scmType XY = AllZeros.
ConstDistMatrix.h Templated class representing distributed matrix with all equal
ConstDistMatrix.cp | elements. The value of all elements equal to is stored in an object of the
p class. The class is used if scmType XY = AllEqual.
DistMatrix.h Templated class representing distributed dense matrix with all
DistMatrix.cpp elements stored in floating-point format. The class is used if scmType XY =
HstDense or scmType XY = KrnDense.
DistSparseMatrix.h Templated class representing distributed sparse matrix with all
DistSparseMatrix.c | elements stored in floating-point format. The class is used if scmType XY =
pp HstSparse or scmType XY = KrnSparse.
OneBitDistMatrix. Templated class representing distributed dense matrix populated
h with only two different values. Each matrix element is stored in one bit of
OneBitDistMatrix.c | memory. Unset bit corresponds to zero matrix element, set bit corresponds
PP to some value. (The value is a scalar contained in the class object.) The
class is used if scmType XY = KrnOneBit.
InPlaceDistMatrix. Templated class representing distributed dense matrix generated in
h place. The matrix allocates just a little amount of physical memory; it’s
InPlaceDistMatrix. | reconstructed as a sequence of elements many times at time of simulation.
cpp The class object contains random number generator seeds to make each
local chunk of the matrix re-generated same. The class is used if
secmType XY = KrnlnPlace.
DistMatrixFactory. Factory function that creates distributed synaptic conductance
h matrices with parameters read from the file "input.mat". If “scmType XY”
DistMatrixFactory. | is equal to “KrnDense”, “KrnSparse”, “KrnOneBit” or “KrnInPlace”, then

37

cpp each matrix is initialized with other set of seeds for random number
generators.

ElementwiseOpl.c Element-wise operations being part of mathematical core of
pp ARACHNE. Each operation has many input vectors and many output

ElementwiseOp2.c | vectors. The vectors are processed in element-wise manner by different
pp processes/threads independently.

ElementwiseOp3.c
pp

ElementwiseOp4.c
pp

ComputeSynCoef.c Method that computes synchronization coefficient between neuron
pp spikes.

DistEnv.h Distributed environment variable and utility function staff.

DistEnv.cpp

FixCurrentProgress Method that prints overall progress and refreshes status file in
.cpp background simulation mode.

Method that saves backup files.

OtherFilelOUtils.h I/O file utility functions that are not related to reading from and

OtherFilelOUtils.c | writing to MAT-files. They provide support of background simulation mode
pp and backup saving of the progress.

DistributionWrapp Wrapper of the random number generator facade class
er.h std::uniform_real distribution<T>. The wrapper itself plays minor technical

DistributionWrapp | role making it possible to use the generator in particular software.
er.cpp

GetTypeTagUtils.h Templated utility functions that return MATLAB data type tag and

MPI data type tag given template argument.
MathUtils.h Various mathematical functions used in tests.
MathUltils.cpp

Notice that functions “m_e_inf” and “m_i_inf” live not only in C++, but also in MATLAB files “m_e_inf.m”

and “m_i_inf.m”. If any changes, make sure that the code is identical.

I/O directories
All files HPC kernel works with live in the directory “worker/iofiles.” The directory contains some

subdirectories listed below:

1. “iofiles/host-kernel” — this directory is used to store all files MATLAB host passes to HPC
kernel. The files are:
a) “input.mat” — input data for simulation,
b) “terminate” — empty file signalling about termination request,
¢) “snapshot” — empty file signalling about snapshot request.
2. “iofiles/kernel-host” — this directory is used to store all files HPC kernel passes to MATLAB
host. The files are:
a) “output.mat” — the file with results of simulation,
b) empty file with name pattern “iter %i - %i; %g sec” or “iter %i (%i - %i); %g sec” used to
report current progress of HPC kernel running in background mode.
3. “iofiles/kernel-host/snapshot”— this directory is used to store the snapshot file “output.mat”
dumped by HPC kernel in background mode per user’s request.
4, “iofiles/kernel-kernel” — this directory is used to store the file “intermediate.mat” saved by
HPC kernel and loaded afterwards to continue previous simulation session (the files “input.mat” and
“output.mat” are read in that case as well).
5. “iofiles/backup” — this directory is used to store backup data. There are two backup storage
directories: ‘“iofiles/backup/backup-1” and “iofiles/backup/backup-2” used by HPC kernel in turn. Each
backup storage directory contains two subdirectories: “kernel-host” for the file “output.mat” and “kernel-

38

kernel” for the file “intermediate.mat.” There is empty pointer file in the directory “iofiles/backup” that points
to the backup storage directory that will be used for the next backup saving. The name of the file “1” or “2”
indicates the storage.

Passing new parameters from host (MATLAB) to workers (C++)

Passing a new scalar to an equation

Let’s consider the case when you need to make some equation dependent on some new floating-point scalar
variable defined in MATLAB.

For example, you want to make function “tau n e” defined in file “tau n_e.cpp” dependent on variable
“myScalar” defined in MATLAB code.

1. Open file “PreparelnputData.m” and find “if useSPA” statement. Add your variable to the
body of the statement as it was done for other variables.

2. Find “input = ...” statement and add the name “myScalar” to the list using single quotes
(notice that MATLAB syntax uses single quotes ' instead of double quotes ” to denote string literals).

3. Log in to the master node and open the file

“/home/reviewer/gs/worker/GammaSimulator.h”.

Find the place where the following variables “dt”, “dt05”, “v rev ¢”, ... are declared and add the
declaration of new variable “myScalar” in the same way.

4, Open file “/home/reviewer/gs/worker/ReadAllocateWrite.cpp” and find the place where the
variables “dt”, “v_rev_e”, “v_rev i”, ... are read from MAT-file.

Add one more line for the new variable as follows:
myScalar = ReadCheckBroadcastScalar<T>("myScalar").
5. Open file “/home/reviewer/gs/worker/tau n_e.cpp” and utilize the new variable as you need.
For example, you can replace line
T beta_n=T(0.5) - exp(—(v + 57) / 40);
with the following line:
T beta_n = myScalar - exp(—(v + 57) / 40).
6. Run script “/home/reviewer/gs/worker/build Linux RELEASE.sh” to recompile the program.
Passing a new vector to an element-wise operation
Let’s consider the case when you need to make some element-wise operation dependent on some new floating-
point vector defined in MATLAB.
The case of scattering of the vector
The scattering means that the vector read from input MAT-file on the master process is divided into parts so
that each process receives only one part of the vector.
Let’s suppose that you want to make function “ElementwiseOperationl” defined in file
“ElementwiseOp1.cpp” dependent on vector “myVector” of length “num_e” defined in MATLAB code.

1. Open file “PreparelnputData.m” and find “if useSPA” statement. Add your vector to the body
of the statement as it was done for other variables.

2. Find “input = ...” statement and add the name “myVector” to the list using single quotes.

3. Log in to master node and open the file

“/home/reviewer/gs/worker/GammaSimulator.h”.

Find the place where the following vectors “v_e”, “n e”, “m e”, ... are declared and add the
declaration of new vector “myVector” in the same way.

4. Open file “/home/reviewer/gs/worker/ReadAllocateWrite.cpp” and find the place where the
vectors “v_e”, “n_e”, “m_e”, ... are read from MAT-file.

Add one more line for the new vector as follows:
myVector = ReadCheckScatterVector<T>("myVector", num_e);

5. Open file “/home/reviewer/gs/worker/ElementwiseOpl.cpp” and utilize the new vector as you
need. Use “myVector[idx]” to read an element of the vector in the cycle.
6. Run script “/home/reviewer/gs/worker/build Linux RELEASE.sh” to recompile the program.

39

The case of broadcasting of the vector

The broadcasting means that the vector read from input MAT-file on master process is cloned among all
processes. In general, passing a vector in such way from MATLAB to HPC kernel is similar to the case of scattering
of the vector described above. The only differences are as follows:

1. The vector should be read form MAT-file with help of other method:
myVector = ReadCheckBroadcastVector<T>("myVector", num_e);
2. Access to elements of broadcasted vectors in element-wise operations should not be done by

the same indices as for scattered vectors. The reason is as follows. Length of local portion of scattered vector
depends on number of processes while local length of broadcasted vector does not depend on number of
processes. As a result, access by “myVector[idx]” may cause out-of-range error if “idx” is the same index
variable used to access scattered vectors of length “num_e”.

Biophysics model

Model equations for membrane potential dynamics

Dynamics of membrane potential V" of both types of neurons is described by a set of equations with
the Hodgkin—Huxley formalism:

Cd—V =7 -1, -1,-1,-1, -1 (12)

d t app Na syn extra

The computational kernel located on a remote cluster calculates the set of Eq. (12), where Iy, and Ix
are the sodium and potassium currents respectively, /., is a current used to simulate the dynamics of
external excitation, /1 is a leaking current, I, is a sum of synaptic currents. The Iy, and Ix are simulated
using a previously reported approach. The C++ code for calculating the Eq. (12) with the kinetics for i-
neurons and e-neurons was adopted from the NEURON database (https://senselab.med.yale.edu; ModelDB
accession no. 138421).

The ARACHNE also provides the option to add mod-files generated by NEURON software tool.

Model equations for synaptic currents

Chemical synapses have varied conductances, release probabilities and spatial distributions. The
synaptic current in the model is defined as I = gus,(V-V5), where n = 1,...,4 denotes one of the four synaptic
types - ee, ii, ei, or ie, respectively, V,, is a revers potential, g, and s, are the synaptic conductance and
kinetics defined aS'

Ni—1
SEE z SpE S[E z spE SEI Z SEk SI[z S[k
where
dS gy g, SErr,
— =g, (v) (l—sEkR/_ —T—), g:(v;)=5(1+Tanh(v, /4)), (13)
1
dsyp, Sikr,
o & Vi) A=Syp _r_)’ g;(v;)=2(1+Tanh(v, / 4)) (14)
1

The variable v is dimensionless.

Eq. (13) describes synapses from e-neurons to Rj-neurons (where R; is either ej-cell or i; -cell
depending on the postsynaptic cell), while Eq. (14) describes synapses from i-neurons to R—neurons. The
total synaptic current received by a single neuron is dependent on the network size and the synaptic
distributions.

Network organization: Topology

ARACHNE basic network connectivity is represented by circle. This (a) enables full cell inter-
connectivity, without edge effects or specific boundary conditions, (b) makes all cell locations a priori
equivalent, and (c) can be described by a single size parameter, radius R.

The sizes of the i- and e-neurons networks can vary independently. In contrast, the @ and e networks
have similar sizes and are positioned 'next' to each other. The latter reflects the fact that, throughout area

40

CA1 of the hippocampus, pyramidal cells are arranged in a regular layer and surrounded by a relatively
uniform scatter of astrocytes. Accordingly, modelled astrocytes are distributed evenly across the pyramidal
cell network, with a fixed total cell number (in our case study it is equal to the number of e-neurons, for
simplicity). Such an arrangement is to represent diffuse (volume-transmitted) astrocyte-neuron signalling
without loss of generality.

Network organization: Synaptic strengths and their distributions.

The two neuronal networks, i and e, have four types of synaptic connections: ee, ei, ie, ii described.
For each type, ee, ei, ie, ii, the model provides several key parameters, such as synaptic strength w, synaptic
current rise time 7 and decay time 7z , and probability of neurotransmitter release p. All connection strength
values between ith and jth neurons, at any given time, comprise the classical connectivity matrix. One
distinct and novel feature of the model is that the value of p can be modified by the activity of nearby
astrocytes, in accord with the current view in the field of glia-neuron signalling. Synaptic strength w can also
be modified by the three mechanisms of synaptic plasticity incorporated to the model, described in the
sections below.

In the brain, the synaptic strength w appears to depend on the distance between cortical neurons: to
recapitulate this observation the model provides two complementary types of connectivity. The first type,
termed bell-shaped strength (BSS) model, incorporates a Gaussian distribution of w (centred at the
'presynaptic' cell) with the uniform connection density between the nearest 50% of all network neurons and
standard deviation o. The second type, a bell-shaped density (BSD) model, incorporates uniform distribution
of w but a Gaussian distribution of cell-cell connection density, with the number of connections decreasing
with distance from the 'presynaptic' cell.

In addition to having individual synaptic currents, the model enables tonic excitation or inhibition
currents, a rapidly emerging feature of hippocampal networks.

It is important to note that the user can easily change the type of astroglia and neurons, synapses and
their distribution type, and other type of plasticity other biophysical parameters, using only a GUI without
changing the core program on the server.

Release probability distribution

In the basic model, hetero- and homogeneous spatial distributions of the release probability p have
been incorporated. The heterogeneous p pattern which is typical for excitatory synapses on CAl e-neurons
could be applied to the synapses make connections between the networks ei and ie. The ability to vary the
spatial distribution of p is important for exploring the space-delimited influence of astrocytes on synaptic
transmission.

The value of p can range between zero and one, which could be set manually or can be made
dependent on the calcium activity of astrocytes.

Setting the external input

In the model, which has no hierarchical structure (for the sake of generality), external (sensory) input
can be mimicked by a distributed excitatory stimulation of e-cells. The network-wise distribution of such
stimuli is given by the input's external pattern (EP) with the adjustable current amplitude. For small
networks, the EP can be set using the method of a dynamic matrix, with matrix elements representing
activated or non-activated neurons. For large networks, when the matrix size is large, the EP can be defined
using a binary drawing with black pixels depicting activated e-neurons. The total size of the EP in pixels, or
the size of dynamic matrix, thus represents the total number of e-neurons.

In the standard network memory paradigm, brain circuits memorize a particular EP through the
activity-induced changes in synaptic weights, which forms a new connectivity (synaptic weight) matrix.

All-inclusive model of synaptic modifications
Classically, experimental studies documented activity-dependent alterations in synaptic weighting as
an individual event statistically validated within a specific time window. In most cases, the temporal
dynamics of synaptic efficacy change are either neglected or unattainable through reliable measurements.
However, the characteristic time interval over which synaptic modifications continue to change
("remembered") is a key parameter in memorizing the external input to the neural network. The present
41

model enables the setting of a dynamic time-dependent modification of synaptic weights with the following
integral-differential equation:

dt
where the time bin 7 is an user defined interval of a correlation between times of presynaptic and
postsynaptic APs.

The correlation function between APs is |v,(r)v;(r,)|=o(v,(z,)-o(v,(r,)), where
1
o(x)=—

(x) 1+exp(—kx)
valuable only in the vicinities of points (71, 72) means that the integral has significant value only when 71 and

7 are within certain intervals depending on £.
The discrete version of Eq.(15) is

Wi (tk) =W (tk-1)+ T(aa)pre (tk-l)_ ﬂwpost (tk-l))+ ZAW(TI -0)g(tm T T)g(tm Ty T) Wi (tk-l)At > At = he—hy.
The sum is taken for all pairs of spikes in the interval (tk-1 — 7, #k-1)

To quickly adapt experimental STDP curves to the model networks, the software provides a utility
that calculates and visualizes the STPD curve base on inputted parameters, against the experimental data.

%z r(aa)post(t)—ﬂa)m(t))+ j. dr, j dr, ”Vi(rl),vj(rz)||AVf/(r1 -1,)e(t-7,,T)e(t-1,,T) W, (15)

(k >> 1) . The function provides selection of spike pairs so that the integral becomes

The network recall

The recall is a process associated with the network's response to the repeated EP. The response is a
pattern of spiking (active) and non-spiking (passive) neurons. The quality of recall, C, is defined by the
correlation between recalled and 'perfect’ responses to the EP:

Z XY+ Z XY
i=1

J=m+l (16)

\/(ixf+ Y QY)

Jj=m+l1 Jj=m+1

C=

where 7 is total number of neurons of the network, m is a the maximum number of neurons in the
active state of ideal response, x and y denote the state of any neuron of ideal and real responses
correspondently.

After simplification of Eq.(16), the C of a network with a single stored image is:

co__L (17)

Jm(l+k)

where / and k are numbers of active “correctly” and “incorrectly” activated neurons in the recalled
response, respectively; m is number of active neurons in the ideal response. The condition of m = 0 in Eq.
(17) implies total darkness for networks, i.e. an input image array of nothing.

Basic set of parameters

Number of i-neurons is 100 and e-neurons is 200.

Radius of i-networks is 200 um and e-networks is 250 pm.

Rate of signal propagation between neurons is 0.1 mm/ms.

Basic release probability of all synapses was set a pbasic = 0.2, pmax = 0.5 is maximum release
probability which can reach the synapse at any calcium concentration, and [Calss = 100 nM is a resting
calcium concentration of astrocyte.

42

Standard deviation of synaptic distribution are Ge.= 10 neurons, G¢= 12.5 neurons, Gic= 8 neurons,

Oii= 11 neurons.

The single synaptic conductance of the basic model are gi,=0.23 uS, g.=0.29 uS, g:=0.64 nuS,
gee=4 nS.

Rise times are 1e=0.1 ms and 1i=0.3 ms, decay times are d.=3 ms and d;i=9 ms.

The basic values of the parameters of tonic current are Ay= 0. 01 uS/cm?, ¢, = 0.02 ms™!, G, =0.1 uM,
f»=0.1 Hz, d=0.02 ps, T= 100 ms.

The parameters of astrocyte dynamics used in the basic model are adapted from [21]

v =65, ky,=0.1uM, d, =09434 uM, ¢, =2.0uM, v,=0.11s"
d =013 uM, d;=0.08234 uM, ¢, =0.185 r,=7s v, =09 uM s,
d,=1.049uM, a,=02uM"s", P =0.16 r,=72mMs", y=0

The parameters of link between astrocyte and neurons are zspike = 2 mM/ms and z, = 0.02 ms™..

These were the basic values used in the model and can be easily altered using GUI by the user.

Equations for extracellular electric field

Electrical dynamics of brain networks is mainly registered using a field electrode located in the
extracellular space. The electrode senses an extracellular current density generated by a population of
neurons scattered around. Because field recordings are an essential method for neuroscientists, the present
model includes a mechanism to calculate the extracellular field at a given radial coordinates with respect to
the center of the network.

For simplicity, a model of the extracellular field generated by a single neuron is simulated as a
monopole electrical current source between the neuron and the ground:

1(t)

1
o(r,t) :4——, where /(r) is density of transmembrane currents C, ddVe of the neurons e,,and
o r t

—

dv, . . .
C,—— of the neurons i, r is the distance between the neuron and electrode, and o is conductance of

extracellular medium.
The electrical field generated by the network is
1 &1,
pr,)=——)> =+ (18)
dro o,
Model allows calculating the electric field for any single network as well as a superposition of both
networks.

43

